Polycyclic aromatic hydrocarbons (PAHs) exposure is related to the occurrence of cardiovascular diseases (CVDs). Endothelial dysfunction is considered an initial event of CVDs. To confirm the relationship of PAHs exposure with endothelial dysfunction, 8-week-old male SD rats and primary human umbilical vein endothelial cells (HUVECs) were co-treated with environmental doses of 16 priority-controlled PAHs for 90 d and 48 h, respectively. Results showed that 10× PAHs exposure remarkably raised tumor necrosis factor-α and malonaldehyde levels in rat serum (p < 0.05), but had no effects on interleukin-8 levels and superoxide dismutase activity. The expressions of SIRT1 in HUVECs and rat aorta were attenuated after PAHs treatment. Interestingly, PAHs exposure did not activate the expression of total endothelial nitric oxide synthase (eNOS), but 10× PAHs exposure significantly elevated the expression of phosphorylated eNOS (Ser1177) in HUVECs and repressed it in aortas, accompanied with raised nitrite level both in serum and HUVECs by 48.50-253.70 %. PAHs exposure also led to the augment of endothelin-1 (ET-1) levels by 19.76-38.54 %, angiotensin (Ang II) levels by 20.09-39.69 % in HUVECs, but had no effects on ET-1 and Ang II levels in serum. Additionally, PAHs exposure improved endocan levels both in HUVECs and serum by 305.05-620.48 % and stimulated the THP-1 cells adhered to HUVECs (p < 0.05). After PAHs treatment, the smooth muscle alignment was disordered and the vascular smooth muscle locally proliferated in rat aorta. Notably, the systolic blood pressure of rats exposed to 10× PAHs increased significantly compared with the control ones (131.28 ± 5.20 vs 116.75 ± 5.33 mmHg). In summary, environmental chronic PAHs exposure may result in endothelial dysfunction in SD rats and primary HUVECs. Our research can confirm the cardiovascular damage caused by chronic exposure to PAHs and provide ideas for the prevention or intervention of CVDs affected by environmental factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170711 | DOI Listing |
Nat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFNat Commun
December 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.
View Article and Find Full Text PDFNat Commun
December 2024
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC).
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China.
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits.
View Article and Find Full Text PDFFront Immunol
December 2024
Barcelona Endothelium Team, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Background: Preeclampsia (PE) is a pregnancy complication characterized by hypertension, proteinuria, endothelial dysfunction, and complement dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in maternal-fetal communication, might contribute to PE pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other complement-mediated pathologies, and their contribution in PE remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!