Remediation of crude oil contaminated soil through an integrated biological-chemical-biological strategy.

Sci Total Environ

School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Published: April 2024

A plausible approach to remediating petroleum contaminated soil is the integration of chemical and biological treatments. Using appropriate chemical oxidation, the integrated remediation can be effectively achieved to stimulate the biodegradation process, consequently bolstering the overall remediation effect. In this study, an integrated biological-chemical-biological strategy was proposed. Both conventional microbial degradation techniques and a modified Fenton method were employed, and the efficacy of this strategy on crude oil contaminated soil, as well as its impact on pollutant composition, soil environment, and soil microorganism, was assessed. The results showed that this integrated remediation realized an overall 68.3 % removal rate, a performance 1.7 times superior to bioremediation alone and 2.1 times more effective than chemical oxidation alone, elucidating that the biodegradation which had become sluggish was invigorated by the judicious application of chemical oxidation. By optimizing the positioning of chemical treatment, the oxidization was allowed to act predominantly on refractory substances like resins, thus effectively enhancing pollutant biodegradability. Concurrently, this oxidating maneuver contributed to a significant increase in concentrations of dissolvable nutrients while maintaining appropriate soil pH levels, thereby generating favorable growth conditions for microorganism. Moreover, attributed to the proliferation and accumulation of degrading bacteria during the initial bioremediation phase, the microbial growth subsequent to oxidation showed rapid resurgence and the relative abundance of typical petroleum-degrading bacteria, particularly Proteobacteria, was substantially increased, which played a significant role in enhancing overall remediation effect. Our research validated the feasibility of biological-chemical-biological strategy and elucidated its correlating mechanisms, presenting a salient reference for the further studies concerning the integrated remediation of petroleum contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170756DOI Listing

Publication Analysis

Top Keywords

contaminated soil
16
biological-chemical-biological strategy
12
chemical oxidation
12
integrated remediation
12
crude oil
8
oil contaminated
8
integrated biological-chemical-biological
8
petroleum contaminated
8
soil
7
remediation
6

Similar Publications

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!