Spinal cord injury (SCI) is a serious, prolonged, and irreversible injury with few therapeutic options. Albiflorin (AF) possesses powerful pharmacodynamic properties and exerts protective effects against neuroinflammation. However, no research has examined the neuroprotective effect of AF following SCI. Rats were received laminectomy to establish SCI animal model and treated with AF (20 mg/kg and 40 mg/kg). Behavioral experiments were conducted to assess the impacts of AF on motor function after SCI in rats. Hematoxylin-eosin (HE) staining, Nissl staining, and Prussian Blue staining were performed to observe histological changes, neuronal damage, and iron deposition, respectively. Transmission electron microscope was adopted to observe the ultrastructure of spinal cord tissues. Immunofluorescence assay was performed to examine neurons and microglia. ELISA assay was used to examine the production of cytokines. Western blot assay was used to detect the expression level of ferroptosis-related proteins. Microglia BV-2 cells were induced by LPS to mimic the neuroinflammatory condition. Cell viability was assessed by CCK-8 assay, and lipid peroxidase level was measured by C11 BODIPY 581/591 staining. Molecular docking technology was utilized to confirm the relationship between AF and LSD1. AF improved the motor functional recovery after SCI in rats. Meanwhile, AF attenuated neuron apoptosis and microglia activation, reduced the production of pro-inflammatory cytokines and iron accumulation, and inhibited spinal cord ferroptosis following SCI in rats. LSD1 was verified to be a target protein of AF, and AF could concentration-dependently downregulate LSD1 expression in injured spinal cords in vivo and LPS-induced BV-2 cells in vitro. In addition, AF not only inhibited ferroptosis through reducing lipid peroxidase and iron levels and regulating ferroptosis-related proteins, but also inhibited microglial activation and reduced pro-inflammatory cytokines production in LPS-induced BV-2 cells; however, these changes were partly counteracted by LSD1 overexpression. AF could reduce microglial activation and ferroptosis, attenuate neuroinflammation, and improve functional recovery following SCI by downregulating LSD1, providing novel therapeutic strategies for the treatment of SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-024-01978-8 | DOI Listing |
Inflammation
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
Purpose: To investigate the technique for dorsal median sulcus (DMS) mapping and assess its application value in preserving dorsal columnn (DC) function during intramedullary space occupying surgery based on a single-center experience.
Methods: A retrospective analysis was conducted on 41 cases of intramedullary spinal cord tumor admitted to the Department of Neurosurgery at the First Affiliated Hospital of Xiamen University from March 2017 to August 2023. All included cases underwent intraoperative electrophysiological monitoring, and were divided into a study group (n = 18) and a control group (n = 23), based on whether DMS mapping technique was utilized.
Nat Biomed Eng
January 2025
Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA.
Curr Top Dev Biol
January 2025
Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States. Electronic address:
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA. Electronic address:
Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!