A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate. | LitMetric

Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate.

Adv Mater

National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.

Published: May 2024

Coherent phonon transfer via high-quality factor (Q) mechanical resonator strong coupling has garnered significant interest. Yet, the practical applications of these strongly coupled resonator devices are largely constrained by their vulnerability to fabrication defects. In this study, topological strong coupling of gigahertz frequency surface acoustic wave (SAW) resonators with lithium niobate is achieved. The nanoscale grooves are etched onto the lithium niobate surface to establish robust SAW topological interface states (TISs). By constructing phononic crystal (PnC) heterostructures, a strong coupling of two SAW TISs, achieving a maximum Rabi splitting of 22 MHz and frequency quality factor product fQ of ≈1.2 × 10 Hz, is realized. This coupling can be tuned by adjusting geometric parameters and a distinct spectral anticrossing is experimentally observed. Furthermore, a dense wavelength division multiplexing device based on the coupling of multiple TISs is demonstrated. These findings open new avenues for the development of practical topological acoustic devices for on-chip sensing, filtering, phonon entanglement, and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202312861DOI Listing

Publication Analysis

Top Keywords

strong coupling
16
lithium niobate
12
surface acoustic
8
acoustic wave
8
wave resonators
8
resonators lithium
8
coupling
6
monolithic strong
4
topological
4
coupling topological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!