Non-coding RNAs (ncRNAs) are highly plastic RNA molecules that can sequester cellular proteins and other RNAs, serve as transporters of cellular cargo and provide spatiotemporal feedback to the genome. Mounting evidence indicates that ncRNAs are central to biology, and are critical for neuronal development, metabolism and intra- and intercellular communication in the brain. Their plasticity arises from state-dependent dynamic structure states that can be influenced by cell type and subcellular environment, which can subsequently enable the same ncRNA with discrete functions in different contexts. Here, we highlight different classes of brain-enriched ncRNAs, including microRNA, long non-coding RNA and other enigmatic ncRNAs, that are functionally important for both learning and memory and adaptive immunity, and describe how they may promote cross-talk between these two evolutionarily ancient biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.16071DOI Listing

Publication Analysis

Top Keywords

non-coding rnas
8
learning memory
8
memory adaptive
8
adaptive immunity
8
fundamental neurochemistry
4
neurochemistry review
4
review intersection
4
intersection brain
4
brain immune
4
immune system
4

Similar Publications

A systems medicine understanding of the regulatory molecular circuits that underpin breast cancer is essential for early cancer detection and precision/personalized medicine in clinical oncology. Transcription factors (TFs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) control gene expression and cell biology, and by extension, serve as pillars of the regulatory circuits that determine human health and disease. We report here the development of a regulatory circuit analysis program, , constructing 10 different types of regulatory elements involving messenger RNA, miRNA, lncRNA, and TFs.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) affects about one-third of patients with diabetes and can lead to end-stage renal disease despite numerous trials aimed at improving diabetic management. Non-coding RNAs (ncRNAs) represent a new frontier in DN research, as increasing evidence suggests their involvement in the occurrence and progression of DN. A growing body of evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in DN signaling pathways might serve as novel biomarkers or therapeutic targets, although this remains to be fully explored.

View Article and Find Full Text PDF

Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders.

Curr Issues Mol Biol

December 2024

Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea.

Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells.

View Article and Find Full Text PDF

C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!