Cuproptosis is an emerging programmed cell death, displaying great potential in cancer treatment. However, intracellular copper content to induce cuproptosis is unmet, which mainly ascribes to the intracellular pumping out equilibrium mechanism by copper exporter ATP7A and ATP7B. Therefore, it is necessary to break such export balance mechanisms for desired cuproptosis. Mediated by diethyldithiocarbamate (DTC) coordination, herein a strategy to efficiently assemble copper ions into polydopamine nanostructure (PDA-DTC/Cu) for reprogramming copper metabolism of tumor is developed. The deposited Cu can effectively trigger the aggregation of lipoylated proteins to induce cuproptosis of tumor cells. Beyond elevating intracellular copper accumulation, PDA-DTC/Cu enables to break the balance of copper metabolism by disrupting mitochondrial function and restricting the adenosine triphosphate (ATP) energy supply, thus catalytically inhibiting the expressions of ATP7A and ATP7B of tumor cells to enhance cuproptosis. Meanwhile, the killed tumor cells can induce immunogenic cell death (ICD) to stimulate the immune response. Besides, PDA-DTC/Cu NPs can promote the repolarization of tumor-associated macrophages (TAMs ) to relieve the tumor immunosuppressive microenvironment (TIME). Collectively, PDA-DTC/Cu presented a promising "one stone two birds" strategy to realize copper accumulation and inhibit copper export simultaneously to enhance cuproptosis for 4T1 murine breast cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202308565DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
copper
10
polydopamine nanostructure
8
catalytically inhibiting
8
cancer immunotherapy
8
cell death
8
intracellular copper
8
induce cuproptosis
8
atp7a atp7b
8
copper metabolism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!