Scientific-grade cameras are frequently employed in industries such as spectral imaging technology, aircraft, medical detection, and astronomy, and are characterized by high precision, high quality, fast speed, and high sensitivity. Especially in the field of astronomy, obtaining information about faint light often requires long exposure with high-resolution cameras, which means that any external factors can cause the camera to become unstable and result in increased errors in the detection results. This paper aims to investigate the effect of displacement introduced by various vibration factors on the imaging of an astronomical camera during long exposure. The sources of vibration are divided into external vibration and internal vibration. External vibration mainly includes environmental vibration and resonance effects, while internal vibration mainly refers to the vibration caused by the force generated by the refrigeration module inside the camera during the working process of the camera. The cooling module is divided into water-cooled and air-cooled modes. Through the displacement and vibration experiments conducted on the camera, it is proven that the air-cooled mode will cause the camera to produce greater displacement changes relative to the water-cooled mode, leading to blurring of the imaging results and lowering the accuracy of astronomical detection. This paper compares the effects of displacement produced by two methods, fan cooling and water-circulation cooling, and proposes improvements to minimize the displacement variations in the camera and improve the imaging quality. This study provides a reference basis for the design of astronomical detection instruments and for determining the vibration source of cameras, which helps to promote the further development of astronomical detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857430 | PMC |
http://dx.doi.org/10.3390/s24031025 | DOI Listing |
Open Res Eur
January 2025
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA.
The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.
View Article and Find Full Text PDFSci Rep
January 2025
Astronomical Observatory, Jagiellonian University, Orla 171, Krakow, 30-244, Poland.
The single crystals of lead-free NaBiTiO were grown using the Czochralski method. The energy gaps determined from X-ray photoelectron spectroscopy (XPS) and optical measurements were approximately 2.92 eV.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Chemistry and Forensic Science, School of Natural Sciences, University of Kent, Canterbury, UK.
Magnesium-containing molecules, including MgCH, MgCH, and MgCH, have been detected in the interstellar medium, largely facilitated by their high dipole moments. However, despite great efforts, MgCH species remain elusive. Given the challenges in obtaining experimental data for these molecules, theoretical studies play a crucial role in guiding their detection.
View Article and Find Full Text PDFNature
January 2025
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada.
Light Sci Appl
January 2025
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtzplatz 1, Eggenstein-Leopoldshafen, 76344, Germany.
The core advantage of metalenses over traditional bulky lenses lies in their thin volume and lightweight. Nevertheless, as the application scenarios of metalenses extend to the macro-scale optical imaging field, a contradiction arises between the increasing demand for large-aperture metalenses and the synchronous rise in design and processing costs. In response to the application requirements of metalens with diameter reaching the order of 10λ or even 10λ, this paper proposes a novel design method for fixed-height concentric-ring metalenses, wherein, under the constraints of the processing technology, a subwavelength 2D building unit library is constructed based on different topological structures, and the overall cross-section of the metalens is assembled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!