Terahertz (THz) waves are electromagnetic waves in the 0.1 to 10 THz frequency range, and THz imaging is utilized in a range of applications, including security inspections, biomedical fields, and the non-destructive examination of materials. However, THz images have a low resolution due to the long wavelength of THz waves. Therefore, improving the resolution of THz images is a current hot research topic. We propose a novel network architecture called J-Net, which is an improved version of U-Net, to achieve THz image super-resolution. It employs simple baseline blocks which can extract low-resolution (LR) image features and learn the mapping of LR images to high-resolution (HR) images efficiently. All training was conducted using the DIV2K+Flickr2K dataset, and we employed the peak signal-to-noise ratio (PSNR) for quantitative comparison. In our comparisons with other THz image super-resolution methods, J-Net achieved a PSNR of 32.52 dB, surpassing other techniques by more than 1 dB. J-Net also demonstrates superior performance on real THz images compared to other methods. Experiments show that the proposed J-Net achieves a better PSNR and visual improvement compared with other THz image super-resolution methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857288 | PMC |
http://dx.doi.org/10.3390/s24030932 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!