Panoramic imaging is increasingly critical in UAVs and high-altitude surveillance applications. In addressing the challenges of detecting small targets within wide-area, high-resolution panoramic images, particularly issues concerning accuracy and real-time performance, we have proposed an improved lightweight network model based on YOLOv8. This model maintains the original detection speed, while enhancing precision, and reducing the model size and parameter count by 10.6% and 11.69%, respectively. It achieves a 2.9% increase in the overall mAP@0.5 and a 20% improvement in small target detection accuracy. Furthermore, to address the scarcity of reflective panoramic image training samples, we have introduced a panorama copy-paste data augmentation technique, significantly boosting the detection of small targets, with a 0.6% increase in the overall mAP@0.5 and a 21.3% rise in small target detection accuracy. By implementing an unfolding, cutting, and stitching process for panoramic images, we further enhanced the detection accuracy, evidenced by a 4.2% increase in the mAP@0.5 and a 12.3% decrease in the box loss value, validating the efficacy of our approach for detecting small targets in complex panoramic scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856936PMC
http://dx.doi.org/10.3390/s24030819DOI Listing

Publication Analysis

Top Keywords

small target
12
target detection
12
small targets
12
increase map@05
12
detection accuracy
12
detecting small
8
panoramic images
8
small
6
detection
6
panoramic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!