Smart forestry, an innovative approach leveraging artificial intelligence (AI), aims to enhance forest management while minimizing the environmental impact. The efficacy of AI in this domain is contingent upon the availability of extensive, high-quality data, underscoring the pivotal role of sensor-based data acquisition in the digital transformation of forestry. However, the complexity and challenging conditions of forest environments often impede data collection efforts. Achieving the full potential of smart forestry necessitates a comprehensive integration of sensor technologies throughout the process chain, ensuring the production of standardized, high-quality data essential for AI applications. This paper highlights the symbiotic relationship between human expertise and the digital transformation in forestry, particularly under challenging conditions. We emphasize the human-in-the-loop approach, which allows experts to directly influence data generation, enhancing adaptability and effectiveness in diverse scenarios. A critical aspect of this integration is the deployment of autonomous robotic systems in forests, functioning both as data collectors and processing hubs. These systems are instrumental in facilitating sensor integration and generating substantial volumes of quality data. We present our universal sensor platform, detailing our experiences and the critical importance of the initial phase in digital transformation-the generation of comprehensive, high-quality data. The selection of appropriate sensors is a key factor in this process, and our findings underscore its significance in advancing smart forestry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857223 | PMC |
http://dx.doi.org/10.3390/s24030798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!