Real-time monitoring and timely risk warnings for the safety, health, and fatigue of underground miners are essential for establishing intelligent mines, enhancing the safety of production, and safeguarding the well-being of miners. This concerns the collection, transmission, and processing of relevant data. To minimize physical strain on miners, data collection functions are consolidated into two wearable terminals: an electronic bracelet equipped with reliable, low-power components for gathering vital sign data and transmitting them via Bluetooth and a miner lamp that integrates multi-gas detection, personnel positioning, and wireless communication capabilities. The gas sensors within the miner lamp undergo regular calibration to maintain accuracy, while the positioning tag supports round-trip polling to ensure a deviation of less than 0.3 m. Data transmission is facilitated through the co-deployment of 5G communication and UWB positioning base stations, with distributed MIMO networking to minimize frequent cell handovers and ensure a low latency of no more than 20 ms. In terms of data processing, a backpropagation mapping model was developed to estimate miners' fatigue, leveraging the strong correlation between saliva pH and fatigue, with vital signs as the input layer and saliva pH as the output layer. Furthermore, a unified visualization platform was established to facilitate the management of all miners' states and enable prompt emergency response. Through these optimizations, a monitoring system for underground miners' status based on mine IoT technology can be constructed, meeting the requirements of practical operations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857590PMC
http://dx.doi.org/10.3390/s24030739DOI Listing

Publication Analysis

Top Keywords

real-time monitoring
8
underground miners'
8
miners' status
8
status based
8
based mine
8
mine iot
8
miner lamp
8
data
5
monitoring underground
4
miners'
4

Similar Publications

Bridging health registry data acquisition and real-time data analytics.

Front Med (Lausanne)

December 2024

Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.

The number of clinical studies and associated research has increased significantly in the last few years. Particularly in rare diseases, an increased effort has been made to integrate, analyse, and develop new knowledge to improve patient stratification and wellbeing. Clinical databases, including digital medical records, hold significant amount of information that can help understand the impact and progression of diseases.

View Article and Find Full Text PDF

Time-resolved single-cell secretion analysis microfluidics.

Lab Chip

January 2025

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.

Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.

View Article and Find Full Text PDF

Improving Real-Time Feedback During Cochlear Implantation: The Auditory Nerve Neurophonic/Cochlear Microphonic Ratio.

Ear Hear

January 2025

Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

Objectives: Real-time monitoring of cochlear function to predict the loss of residual hearing after cochlear implantation is now possible. Current approaches monitor the cochlear microphonic (CM) during implantation from the electrode at the tip of the implant. A drop in CM response of >30% is associated with poorer hearing outcomes.

View Article and Find Full Text PDF

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

An improved concrete structure health monitoring method based on G-S-G is proposed, which fully combines an optimized Gray-Level Co-occurrence Matrix (GLCM) with an improved Self-Organizing Map (SOM) neural network to achieve accurate and real-time concrete structure health monitoring. First of all, in order to obtain a dynamic image of the crack damage region of interest (ROI) with clear contrast and obvious target, the image acquisition system and image optimization method are used to process the damaged image. Moreover, in order to realize the accurate location of crack damage, crack damage identification research based on GLCM-SOM effectively eliminates the interference of honeycomb and pothole damage on crack damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!