Background: Acute myeloid leukemia (AML) is the malignant proliferation of immature myeloid cells characterized by a block in differentiation. As such, novel therapeutic strategies to promote the differentiation of immature myeloid cells have been successful in AML, although these agents are targeted to a specific mutation that is only present in a subset of AML patients. In the current study, we show that targeting the epigenetic modifier enhancer of zeste homolog 2 (EZH2) can induce the differentiation of immature blast cells into a more mature myeloid phenotype and promote survival in AML murine models.
Methods: The EZH2 inhibitor EPZ011989 (EPZ) was studied in AML cell lines, primary in AML cells and normal CD34+ stem cells. A pharmacodynamic assessment of H3K27me3; studies of differentiation, cell growth, and colony formation; and in vivo therapeutic studies including the influence on primary AML cell engraftment were also conducted.
Results: EPZ inhibited H3K27me3 in AML cell lines and primary AML samples in vitro. EZH2 inhibition reduced colony formation in multiple AML cell lines and primary AML samples, while exhibiting no effect on colony formation in normal CD34+ stem cells. In AML cells, EPZ promoted phenotypic evidence of differentiation. Finally, the pretreatment of primary AML cells with EPZ significantly delayed engraftment and prolonged the overall survival when engrafted into immunodeficient mice.
Conclusions: Despite evidence that EZH2 silencing in MDS/MPN can promote AML pathogenesis, our data demonstrate that the therapeutic inhibition of EZH2 in established AML has the potential to improve survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854504 | PMC |
http://dx.doi.org/10.3390/cancers16030569 | DOI Listing |
J Cell Mol Med
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK.
Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: A patient with acute myeloid leukemia (AML) presented with a cardiac mass of unknown nature. This case underscores the importance of careful monitoring and a multidisciplinary approach in managing and differentiation of rare cardiac complications in leukemia patients. It aims to improve diagnostic accuracy and therapeutic outcomes in similar challenging scenarios.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China.
Background: BCL-2 was the first gene identified to have antiapoptotic effects, and venetoclax is an oral selective BCL-2 inhibitor, which has great potential in the treatment of patients with acute myeloid leukemia (AML) who are not candidates for intensive therapy. Notably, posaconazole, an oral antifungal drug, is also a strong factor that can affect blood venetoclax concentrations. To the best of our knowledge, the relationship between BCL-2 expression, posaconazole, and venetoclax, as well as their influence on treatment efficacy and the prognosis of patients with AML, has not been reported.
View Article and Find Full Text PDFBackground: Rising nosocomial infections pose high risks, especially for immunocompromised leukemia patients, necessitating targeted research to enhance patient care and outcomes.The objective of this study was to investigate the impact of nosocomial infections (CDI) on patients hospitalized with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).
Methods: Our study was a retrospective analysis of adult patients hospitalized with a primary diagnosis of ALL or AML, using the Nationwide Inpatient Sample (NIS) database for 2020.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!