Physical Peculiarity of Two Sites in Human Promoters: Universality and Diverse Usage in Gene Function.

Int J Mol Sci

Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

Published: January 2024

Since the discovery of physical peculiarities around transcription start sites (TSSs) and a site corresponding to the TATA box, research has revealed only the average features of these sites. Unsettled enigmas include the individual genes with these features and whether they relate to gene function. Herein, using 10 physical properties of DNA, including duplex DNA free energy, base stacking energy, protein-induced deformability, and stabilizing energy of Z-DNA, we clarified for the first time that approximately 97% of the promoters of 21,056 human protein-coding genes have distinctive physical properties around the TSS and/or position -27; of these, nearly 65% exhibited such properties at both sites. Furthermore, about 55% of the 21,056 genes had a minimum value of regional duplex DNA free energy within TSS-centered ±300 bp regions. Notably, distinctive physical properties within the promoters and free energies of the surrounding regions separated human protein-coding genes into five groups; each contained specific gene ontology (GO) terms. The group represented by immune response genes differed distinctly from the other four regarding the parameter of the free energies of the surrounding regions. A vital suggestion from this study is that physical-feature-based analyses of genomes may reveal new aspects of the organization and regulation of genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855393PMC
http://dx.doi.org/10.3390/ijms25031487DOI Listing

Publication Analysis

Top Keywords

physical properties
12
gene function
8
duplex dna
8
dna free
8
free energy
8
human protein-coding
8
protein-coding genes
8
distinctive physical
8
free energies
8
energies surrounding
8

Similar Publications

Organic-inorganic halocuprates(I) form a promising class of light-emitting materials with high photoluminescence (PL) quantum yield. However, the understanding of their emission properties and the PL mechanism is still limited. Here, we investigate thin films of bis(tetrapropylammonium) hexa-µ-bromo-tetrahedro-tetracuprate(I), [N(C3H7)4]2[Cu4Br6], which has a zero-dimensional (0D) molecular salt structure containing [Cu4Br6]2- ions.

View Article and Find Full Text PDF

Cytokine therapy of acute radiation syndrome.

Best Pract Res Clin Haematol

December 2024

Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, SW7 2AZ, UK.

Radiological accidents/incidents are common with nearly 400 reported since 1944 exposing about 3000 people to substantial doses of ionizing radiations with 127 deaths. Damage to hematopoietic stem and progenitor cells with resulting bone marrow failure is a common consequence of exposure to whole body acute high-dose and -dose-rate ionizing radiations and is termed hematopoietic-acute radiation syndrome, or H-ARS. Therapy of H-ARS includes transfusions, anti-bacterial and -viral drugs, molecularly-cloned hematopoietic growth factors and hematopoietic cell transplants.

View Article and Find Full Text PDF

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Background: Creatinine is a small molecule disease biomarker that reflects kidney function, accurate and effective detection of creatinine will play an important role in the prevention and treatment of diseases. Currently, commonly used creatinine detection methods are limited by expensive instruments, complex sample preparation, many interference factors from biological samples, and environmental factors that can affect the accuracy of the measurement. Therefore, developing a fast, simple, inexpensive, sensitive analysis method that can eliminate background interference and provide multi-detection modes has strong attraction and value.

View Article and Find Full Text PDF

Focus of this study is on the use of the hydrazone compound (3) (N-(4-bromobenzylidene)-4-(1H-indol-3-yl) butane hydrazide), which was previously prepared from the reaction of the compound p-bromobenzaldehyde with the corresponding hydrazide (2), as an intermediate compound for the synthesis of azetidine, thiazolidine, tetrazole, oxadiazole and phthalazine heterocyclic compounds through its reaction with some cyclic reagents and catalysts such as chloro acetyl chloride, thioglycolic acid, sodium-azid, lead dioxide and Hydrogen chloride gas. The prepared compounds were characterized using physical properties and also spectroscopic methods such as infrared spectroscopy, nuclear magnetic resonance spectra of the proton and the isotope of carbon as well as mass spectrometry, which accurately identified the proposed structures of the prepared compounds. The identity of the prepared compounds was determined using physical and spectroscopic properties, where infrared and HNMR spectroscopy of the proton as well as carbon were used in addition to using mass spectrometry to verify the validity of the prepared structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!