The aim of this paper was to examine the effect of different OTA concentrations on the parameters of oxidative stress (glutathione (GSH) and malondialdehyde (MDA) concentrations) and glucose utilization in ethanol production by wine yeasts. In addition to the above, artificial neural networks (ANN) were used to predict the effects of different OTA concentrations on the fermentation ability of yeasts and oxidative stress parameters. The obtained results indicate a negative influence of OTA (4 µg mL) on ethanol production after 12 h. For example, produced 1.320 mg mL of ethanol, while in the control sample 1.603 µg mL of ethanol was detected. However, after 24 h, OTA had no negative effect on ethanol production, since it was higher (7.490 and 3.845 mg mL) in comparison to control samples. Even low concentrations of OTA affect GSH concentrations, with the highest being detected after 12 and 24 h (up to 16.54 µM), while MDA concentrations are affected by higher OTA concentrations, with the highest being detected at 24 h (1.19 µM). The obtained results with the use of ANNs showed their potential for quantification purposes based on experimental data, while the results of ANN prediction models have shown to be useful for predictions of what outcomes different concentrations of OTA that were not part of experiment will have on the fermentation capacity and oxidative stress parameters of yeasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855555 | PMC |
http://dx.doi.org/10.3390/foods13030408 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!