Formulating basic food to improve its nutritional profile is one potential method for food innovation. One option in formulating basic food such as bread is to supplement flours with specified amounts of non-bakery raw materials with high nutritional benefits. In the research presented here, we studied the influence of the addition of curcumin and quercetin extracts in amounts of 2.5% and 5% to wheat flour (2.5:97.5; 5:95). The analysis of the rheological properties of dough was carried out using a Mixolab 2. A Rheofermentometer F4 was used to assess the dough's fermentation, and a Volscan was used to evaluate the baking trials. The effect of the extracts on the rheological properties of dough was measured and found to be statistically significant, with curcumin shortening both dough development time and dough stability. Doughs made with greater quantities of extract had a greater tendency to early starch retrogradation, which negatively affects the shelf life of the end products. The addition of extracts did not significantly affect either the ability to form gas during fermentation or its retention, which is important because this gas is prerequisite to forming a final product with the required volume and porosity of crumb. Less favourable results were found on sensory evaluation, wherein the trial bread was significantly worse than the control wheat bread. The panel's decision-making might have been influenced by the atypical colour of the bread made with additives, and in case of a trial bread made with quercetin, by a bitter taste. From the technological point of view, the results confirmed that the composite flours prepared with the addition of extracts of curcumin and quercetin in amounts of 2.5% and 5% can be processed according to standard procedures. The final product will be bread with improved nutritional profile and specific sensory properties, specifically an unconventional and attractive colour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855696PMC
http://dx.doi.org/10.3390/foods13030382DOI Listing

Publication Analysis

Top Keywords

rheological properties
12
properties dough
12
formulating basic
8
basic food
8
nutritional profile
8
curcumin quercetin
8
amounts 25%
8
addition extracts
8
final product
8
trial bread
8

Similar Publications

The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.

View Article and Find Full Text PDF

Design and Synthesis of Triazine-Based Hydrogel for Combined Targeted Doxorubicin Delivery and PI3K Inhibition.

ACS Biomater Sci Eng

January 2025

School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!