Organophosphorus flame retardants (OPFRs) have been widely used in polymeric materials owing to their flame retardant and plasticizing effects. Investigating the fragmentation pathway of OPFRs is of great necessity for further discovering and identifying novel pollutants using orbitrap-based high-resolution mass spectrometry (HRMS). A total of 25 OPFRs, including alkyl, halogenated, and aromatic types, were analyzed in this study. The fragmentation pathways of the OPFRs were investigated using orbitrap-based HRMS with high-energy collision dissociation (HCD) in positive mode. The major fragmentation pathways for the three types of OPFRs are greatly affected by the substituents. In detail, the alkyl and halogenated OPFRs underwent three McLafferty hydrogen rearrangements, wherein the substituents were gradually cleaved to form the structurally stable [HPO] (/ = 98.9845) ions. In contrast, the aromatic OPFRs would cleave not only the C-O bond but also the P-O bond, depending on the substituents, to form fragment ions such as [CHO] (/ = 95.0495) or [CH] (/ = 91.0530), among others. Using HRMS improved the accuracy of fragment ion identification, and the pathway became more evident. These fragmentation laws can provide identification information in pollutant screening work and theoretical references for the structural characterization of compounds with diverse substituent structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856799 | PMC |
http://dx.doi.org/10.3390/molecules29030680 | DOI Listing |
J Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:
Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.
View Article and Find Full Text PDFJ Public Health Afr
December 2024
Department of Global Health, University of Washington, Seattle, United States of America.
Background: Many low- and middle-income countries (LMICs) face the daunting task of digitising, maturing and deciding where to invest in digital health systems.
Aim: Describing the facilitators and barriers to conducting digital health maturity assessments and how health leaders can prioritise the assessments.
Setting: eHealth leaders from 10 African countries, working or supporting Ministries of Health's digital health and participating in the eHealth Leaders' Forum from July 2023 to September 2023.
Small
January 2025
College of Energy, Xiamen University, Xiamen, Fujian, 361102, China.
Silicon is widely recognized as a promising anode material for all-solid-state batteries (ASSBs) due to exceptional specific capacity, abundant availability, and environmental sustainability. However, the considerable volume expansion and particle fragmentation of Si during cycling lead to significant performance degradation, limiting its practical application. Herein, the development of a pre-lithiated Si-based composite anode (c-LiSi) is presented, designed to address the key challenges faced by Si-based anodes, namely severe volume changes and low electrochemical stability.
View Article and Find Full Text PDFOncogene
January 2025
Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
The functional activation of the androgen receptor (AR) and its interplay with the aberrant Hh/Gli cascade are pivotal in the progression of castration-resistant prostate cancer (CRPC) and resistance to AR-targeted therapies. Our study unveiled a novel role of the truncated form of Gli (t-Gli3) in advancing CRPC. Investigation into Gli3 regulation revealed a Smo-independent mechanism for its activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!