Water pollution has becoming an increasingly serious issue, and it has attracted a significant amount of attention from scholars. Here, in order remove heavy metal hexavalent chromium (Cr (VI)) from wastewater, graphitic carbon nitride (g-CN) was modified with molybdenum disulfide (MoS) at different mass ratios via an ultrasonic method to synthesize g-CN/MoS (CNM) nanocomposites as photocatalysts. The nanocomposites displayed efficient photocatalytic removal of toxic hexavalent chromium (Cr (VI)) from water under UV, solar, and visible light irradiation. The CNM composite with a 1:2 g-CN to MoS ratio achieved optimal 91% Cr (VI) removal efficiency at an initial 20 mg/L Cr (VI) concentration and pH 3 after 120 min visible light irradiation. The results showed a high pH range and good recycling stability. The g-CN/MoS nanocomposites exhibited higher performance compared to pure g-CN due to the narrowed band gap of the Z-scheme heterojunction structure and effective separation of photo-generated electron-hole pairs, as evidenced by structural and optical characterization. Overall, the ultrasonic synthesis of g-CN/MoS photocatalysts shows promise as an efficient technique for enhancing heavy metal wastewater remediation under solar and visible light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856395PMC
http://dx.doi.org/10.3390/molecules29030637DOI Listing

Publication Analysis

Top Keywords

visible light
16
hexavalent chromium
12
g-cn/mos nanocomposites
8
chromium water
8
heavy metal
8
solar visible
8
light irradiation
8
visible
4
light photoactivity
4
g-cn/mos
4

Similar Publications

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Sheehan syndrome: a current approach to a dormant disease.

Pituitary

January 2025

Department of Endocrinology and Metabolism, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye.

Sheehan syndrome (SS) is postpartum pituitary necrosis leading to severe hypopituitarism. Severe bleeding during delivery and postpartum period results in ischemic necrosis of the enlarged pituitary gland during pregnancy. The improved obstetrical care decreased the incidence of SS significantly, however SS should always be kept in mind in the etiologies of hypopitutarism in women which can be easily recognized by medical history of the patient.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!