The main topic of the article is to provide the characteristics of individual intermolecular interactions present between three lantern-like superphanes and the H2O, NH3, HF, HCN, and MeOH molecules trapped inside them. Despite the large cavity, the freedom of the trapped molecules is significantly limited by the presence of numerous interaction sites on the side chains of the superphane molecule. It is shown that the molecule trapped inside the superphane is stabilized mainly by only one or, less often, two strong hydrogen bonds involving the imino nitrogen atom, but QTAIM calculations also suggest the presence of many other intermolecular interactions, mainly hydrogen bonds involving imino or central hydrogen atoms from the side chains of the superphane molecule. Moreover, it is also shown that the structural simplification of the side chains does not significantly affect both the size of the superphane molecule and the obtained encapsulation energies, which is important in modeling this type of carceplexes. Noticeably, the parent superphane considered here was previously synthesized by the group of Qing He, so the results obtained will help in understanding this type and similar systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856625 | PMC |
http://dx.doi.org/10.3390/molecules29030601 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.
Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Kemerovo State University, Krasnaya 6, Kemerovo, 650000, Russia.
The compressibility of crystalline tetrabromophthalic anhydride (TBPA) and 1-ethyl-3-methylimidazolium nitrate (EMN) was studied based on density functional theory including dispersion interactions at pressures below 1 GPa. It is found for the first time that EMN demonstrates negative linear compressibility (NLC) up to ∼0.15 GPa, whereas TBPA shows significant NLC at pressures higher than ∼0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, National Institute of Technology, Nara College, Yamatokoriyama, Nara 639-1080, Japan.
This study focuses on two types of phosphonium cation-based ionic liquids (P-ILs) with different alkyl chains: triethylalkylphosphonium (P222R) and tributylalkylphosphonium (P444R) cations. Broadband dielectric spectroscopy showed that the translational motion of the ions accelerated with an increasing number of alkyl chains by coupling with their rotational motion in both P-ILs. Raman spectroscopy revealed that P222R cations, despite dielectric similarities to P444R cations, can form all-trans conformations and cation-rich nanodomains because they have a relatively polar, short alkyl chain moiety with a central P atom and less-polar alkyl chains than those of P444R cations.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!