Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dairy cows face several challenges during the transition period, and the administration of live yeast might be useful to mitigate this stressful condition. In the current study, the effects of live yeast administration on milk production, feed intake, and metabolic and inflammatory conditions were evaluated. Multiparous Holstein cows were enrolled in this randomized controlled trial and received either a control diet (CTR, = 14) or the control diet plus 4 g/d of live yeast (LSC, = 14) from -21 to 56 days relative to calving. Dry matter intake, milk yield and composition, and rumination time were monitored daily. Blood samples were collected at -21, -7, 3, 14, 28, 42, and 56 days relative to calving to evaluate the metabolic profile. Fecal samples were collected at 56 days relative to calving to measure volatile fatty acids and feed digestibility. No differences between groups were observed in dry matter intake. Compared with CTR, rumination time was lower in LSC in after calving. Although there were no differences in milk components between groups, LSC had greater milk yield in the last three weeks of the study than CTR. No differences were observed in inflammatory markers or other plasma metabolites, except for β-hydroxybutyrate, which was higher in LSC, and reactive oxygen metabolites (ROMs), which were lower in LSC. Overall, these outcomes suggest that live yeast supplementation had some positive effects on milk yield and oxidative status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854559 | PMC |
http://dx.doi.org/10.3390/ani14030472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!