Although the diagnosis of sepsis requires the identification of the three components of infection, a systemic inflammation response, and organ dysfunction, there is currently no consensus on gold-standard criteria. There are however suggested tools and tests, which have been proposed in international guidelines, including those produced by the Surviving Sepsis Campaign. Biomarkers play an important role in these tools and tests, and numerous heterogeneous studies have been performed to evaluate their respective clinical utility. Our review of the current practice shows that no biomarkers of infection, systemic inflammation response, organ dysfunction and sepsis are currently specifically recommended, which is probably due to the lack of standardization of studies. We therefore propose to define a framework for conducting clinically relevant translational biomarker research and seek to establish ideal criteria that can be applied to an infection, systemic inflammation response, organ dysfunction and sepsis biomarkers, which can enable early screening of sepsis, diagnosis of sepsis at the time of clinical suspicion and monitoring of sepsis treatment efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855655 | PMC |
http://dx.doi.org/10.3390/diagnostics14030300 | DOI Listing |
Sci Rep
December 2024
National Centre for Diseases Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy.
This study aimed to calculate Italy's first national maternal mortality ratio (MMR) through an innovative record-linkage approach within the enhanced Italian Obstetric Surveillance System (ItOSS). A record-linkage retrospective cohort study was conducted nationwide, encompassing all women aged 11-59 years with one or more hospitalizations related to pregnancy or pregnancy outcomes from 2011 to 2019. Maternal deaths were identified by integrating data from the Death Registry and national and regional Hospital Discharge Databases supported by the integration of findings from confidential enquiries conducted through active surveillance.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.
Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.
Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.
Nat Commun
December 2024
Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!