This study aims to improve the mechanical properties of post-consumer recycled (PCR) plastic composed primarily of polypropylene (PP) and polyethylene (PE), which generally exhibit poor miscibility, by applying coupling agents and graphene. Here, we compare a commercially available coupling agent with a directly synthesized maleic anhydride (MA) coupling agent. When applied to a 5:5 blend of recycled PP and PE, an optimum tensile strength was achieved at a 3 wt% coupling agent concentration, with the MA coupling agent outperforming the commercial one. Characterization through Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA) revealed a PP:PE ratio of approximately 3:7 in the PCR plastics, with 4.86% heterogeneous materials present. Applying 3 wt% of the commercial and MA coupling agents to the PCR plastics resulted in a significant 53.9% increase in the tensile strength, reaching 11.25 MPa, and a remarkable 421.54% increase in the melt flow index (MFI), reaching 25.66 g/10 min. Furthermore, incorporating 5 wt% graphene led to a notable 64.84% increase in the tensile strength. In addition, the application of MA coupling agents and graphene improved the thermal stability of the PCR plastics. These findings show significant promise for addressing environmental concerns associated with plastic waste by facilitating the recycling of PCR plastics into new products. The utilization of coupling agents and graphene offers a viable approach to enhance the mechanical properties of PCR plastics, paving the way for sustainable and environmentally friendly solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857190 | PMC |
http://dx.doi.org/10.3390/polym16030380 | DOI Listing |
Molecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFLife (Basel)
December 2024
Division of Pharmacology, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa.
Linn is a well-known African traditional herb due to its tremendous medicinal and nutritional properties. It is used worldwide for the treatment of different ailments and diseases. In the present study, the phytochemical and antioxidant activity of South African fruit pulp extracts was evaluated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Labill. and L. for neuroprotective purposes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland.
Tumor-associated macrophages (TAMs) in the colorectal cancer (CRC) microenvironment promote tumor progression but can be reprogrammed into a pro-inflammatory state with anti-cancer properties. Activation of the G protein-coupled receptor 84 (GPR84) is associated with pro-inflammatory macrophage polarization, making it a potential target for CRC therapy. This study evaluates the effects of the GPR84 agonists 6-OAU and ZQ-16 on macrophage activation and anti-cancer efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!