"Nano in Nano"-Incorporation of ZnO Nanoparticles into Cellulose Acetate-Poly(Ethylene Oxide) Composite Nanofibers Using Solution Blow Spinning.

Polymers (Basel)

Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain.

Published: January 2024

In this work, the preparation and characterization of composites from cellulose acetate (CA)-poly(ethylene oxide) (PEO) nanofibers (NFs) with incorporated zinc oxide nanoparticles (ZnO-NPs) using solution blow spinning (SBS) is reported. CA-PEO nanofibers were produced by spinning solution that contained a higher CA-to-PEO ratio and lower (equal) CA-to-PEO ratio. Nanoparticles were added to comprise 2.5% and 5% of the solution, calculated on the weight of the polymers. To have better control of the SBS processing conditions, characterization of the spinning suspensions is carried out, which reveals a decrease in viscosity (two- to eightfold) upon the addition of NPs. It is observed that this variation of viscosity does not significantly affect the mean diameters of nanofibers, but does affect the mode of the nanofibers' size distribution, whereby lower viscosity provides thinner fibers. FESEM-EDS confirms ZnO NP encapsulation into nanofibers, specifically into the CA component based on UV-vis studies, since the release of ZnO is not detected for up to 5 days in deionized water, despite the significant swelling of the material and accompanied dissolution of water-soluble PEO. Upon the dissolution of CA nanofibers into acetone, immediate release of ZnO is detected, both visually and by spectrometer. ATR-FTIR studies reveal interaction of ZnO with the CA component of composite nanofibers. As ZnO nanoparticles are known for their bioactivity, it can be concluded that these CA-PEO-ZnO composites are good candidates to be used in filtration membranes, with no loss of incorporated ZnO NPs or their release into an environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857684PMC
http://dx.doi.org/10.3390/polym16030341DOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
8
composite nanofibers
8
solution blow
8
blow spinning
8
ca-to-peo ratio
8
release zno
8
zno detected
8
zno
7
nanofibers
7
"nano nano"-incorporation
4

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

Decoding Plant-Based Green Synthesis of Zinc Oxide Nanoparticles.

Chem Biodivers

January 2025

Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.

Article Synopsis
  • This study compares the behavior of two plant species and their extracts in synthesizing zinc oxide nanoparticles from zinc nitrate hexahydrate.
  • Sugars, particularly glucose and sucrose, play a crucial role in this synthesis, comprising over 70% of the dried extract.
  • The process can successfully occur at low temperatures (120°C) but requires a specific ratio of reactants to ensure the production of "clean" ZnO nanoparticles.
View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!