Starches plasticized with glycerol/citric acid/stearic acid and tributyl 2-acetylcitrate (ATBC), respectively, were processed with poly (butylene adipate-Co-terephthalate (PBAT) via extrusion and a film-blown process. All the composite films were determined for morphology, mechanical, thermal stability, crystalline, and optical properties. Results show that the most improved morphology was in the 30% glycerol plasticized PBAT/thermoplastic starch (TPS) composite films, characterized by the smallest and narrowest distribution of TPS particle sizes and a more uniform dispersion of TPS particles. However, the water absorption of PBAT/TPS composite films plasticized with glycerol surpassed that observed with ATBC as a plasticizer. Mechanical properties indicated insufficient plasticization of the starch crystal structure when using 10% ATBC, 20% ATBC, and 20% glycerol as plasticizers, leading to poor compatibility between PBAT and TPS. This resulted in stress concentration points under external forces, adversely affecting the mechanical properties of the composites. All PBAT/TPS composite films exhibited a negative impact on the initial thermal decomposition temperature compared to PBAT. Additionally, the haze value of PBAT/TPS composite films exceeded 96%, while pure PBAT had a haze value of 47.42%. Films plasticized with 10% ATBC, 20% ATBC, and 20% glycerol displayed lower transmittance values in the visible light region. The increased transmittance of films plasticized with 30% glycerol further demonstrated their superior plasticizing effect compared to other PBAT/TPS composite films. This study provides a simple and feasible method for preparing low-cost PBAT composites, and their extensions are expected to further replace general-purpose plastics in daily applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857009PMC
http://dx.doi.org/10.3390/polym16030326DOI Listing

Publication Analysis

Top Keywords

composite films
28
pbat/tps composite
16
atbc 20%
16
films plasticized
12
films
9
30% glycerol
8
mechanical properties
8
10% atbc
8
20% atbc
8
20% glycerol
8

Similar Publications

In this study, composite films (BC/Ch/SA/EEMS) were fabricated using the casting method by incorporating bacterial cellulose (BC), chitosan (Ch), and sodium alginate (SA) with ethanolic Moringa seed extract (EEMS). HPLC analysis detected 16 polyphenolic compounds in EEMS, with Rutin (59.56 μg/mL) the most abundant, while GC-MS analysis identified 11-octadecenoic acid (88.

View Article and Find Full Text PDF

Seasonal dynamics can vastly influence the natural depletion of oil spilled into the ocean and the Arctic regions are characterized by large seasonal changes, especially in temperature and daylight. To determine the influences of seasonal variation on natural oil depletion processes like dissolution, photooxidation and biodegradation, we deployed thin films of three oils in natural seawater during the Arctic summer and winter in Svalbard, Norway. The extent of oil depletion varied with season and the type of the oil, however, considerable depletion of n-alkanes and polycyclic aromatic compounds were observed during both summer and winter.

View Article and Find Full Text PDF

The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films.

View Article and Find Full Text PDF

Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.

View Article and Find Full Text PDF

Stretchable, Patterned Carbon Nanotube Array Enhanced by TiCT/Graphene for Electromagnetic Interference Shielding.

Nanomaterials (Basel)

March 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.

Stretchability and flexibility are essential characteristics for high-performance electromagnetic interference (EMI) shielding materials in wearable and smart devices. However, achieving these mechanical properties while also maintaining high EMI shielding effectiveness (SE) for shielding materials remains a significant challenge. Here, a stretchable patterned carbon nanotube (CNT) array composite film, reinforced with two-dimensional (2D) nanomaterials (TiCT and graphene), is fabricated using a straightforward scraping method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!