In glioblastoma, a mesenchymal phenotype is associated with especially poor patient outcomes. Various glioblastoma microenvironmental factors and therapeutic interventions are purported drivers of the mesenchymal transition, but the degree to which these cues promote the same mesenchymal transitions and the uniformity of those transitions, as defined by molecular subtyping systems, is unknown. Here, we investigate this question by analyzing publicly available patient data, surveying commonly measured transcripts for mesenchymal transitions in glioma-initiating cells (GIC), and performing next-generation RNA sequencing of GICs. Analysis of patient tumor data reveals that TGFβ, TNFα, and hypoxia signaling correlate with the mesenchymal subtype more than the proneural subtype. In cultured GICs, the microenvironment-relevant growth factors TGFβ and TNFα and the chemotherapeutic temozolomide promote expression of commonly measured mesenchymal transcripts. However, next-generation RNA sequencing reveals that growth factors and temozolomide broadly promote expression of both mesenchymal and proneural transcripts, in some cases with equal frequency. These results suggest that glioblastoma mesenchymal transitions do not occur as distinctly as in epithelial-derived cancers, at least as determined using common subtyping ontologies and measuring response to growth factors or chemotherapeutics. Further understanding of these issues may identify improved methods for pharmacologically targeting the mesenchymal phenotype in glioblastoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192628 | PMC |
http://dx.doi.org/10.1038/s41417-023-00724-w | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Oncology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No.71 Baoshan North Road, Yunyan District, Guiyang City, 550001, Guizhou Province, China.
Circular RNAs (circRNAs), along with their pathogenic property in non-small cell lung cancer (NSCLC), require comprehensive analyses and explanations. The study is established with the purpose to elucidate the potential molecular mechanism of circATP9A in NSCLC. CircATP9A and microRNA (miR)-582-3p were evaluated by real-time quantitative polymerase chain reaction, and ribosomal protein large P0 (RPLP0), cleaved caspase-3, cleaved Ki-67, epithelial-to-mesenchymal transition (EMT)-associated proteins (N-cadherin and E-cadherin), and core proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were by Western blot.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China.
Nonylphenol (NP) is a common environmental contaminant and endocrine disruptor. Our previous research demonstrated that NP could promote the proliferation and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells; however, the specific mechanism remains unclear. miRNA sequencing revealed that NP upregulated the expression levels of microRNA(miR)-151a-3p in CRC.
View Article and Find Full Text PDFCell Biol Int
January 2025
Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
Hypoxia is a common phenomenon for solid tumors due to a lack of effective vascular system, and has been deemed as an important factor that drives the progression of thyroid cancer (TC) via altering the characteristics of tumor cells. The present study suggested that hypoxic TC cells enhanced cancer stem cell properties and progression of TC by delivering long intergenic non-protein coding RNA 665 (LINC00665)-containing exosomes. Specifically, TPC1 cells were exposed to normoxic or hypoxic environment, and it was found that hypoxic TPC1 cells-secreted exosomes (H-exo) were enriched with LINC00665, compared to normoxic TPC1 cells-derived exosomes (N-exo).
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: It has been proposed that repeated exposure of bronchial epithelial cells to atmospheric particulate matter (PM) could disrupt airway epithelial integrity and lead to epithelial-to-mesenchymal transition (EMT) and ultimately airway remodeling. The molecular mechanisms underlying PM-related bronchial epithelial EMT have not yet been elucidated. The aim of this research is to clarify the molecular mechanism of EMT upon PM exposure.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Nephrology, Pu'er People's Hospital, Pu'er, Yunnan, China.
Background: Chronic kidney disease (CKD) has become a worldwide health problem and the incidence rate and mortality of CKD have been rising. Renal fibrosis (RF) is the final common pathological feature of almost all kinds of CKD and Epithelial-mesenchymal transition (EMT) is the predominant stage of RF. β-catenin is a key component of the Wnt signaling pathway, which has been fully proven to promote EMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!