To detect and track structural changes in atomic nuclei, the systematic study of nuclear levels with firm spin-parity assignments is important. While linear polarization measurements have been applied to determine the electromagnetic character of gamma-ray transitions, the applicable range is strongly limited due to the low efficiency of the detection system. The multi-layer Cadmium-Telluride (CdTe) Compton camera can be a state-of-the-art gamma-ray polarimeter for nuclear spectroscopy with the high position sensitivity and the detection efficiency. We demonstrated the capability to operate this detector as a reliable gamma-ray polarimeter by using polarized 847-keV gamma rays produced by the [Formula: see text]([Formula: see text]) reaction. By combining the experimental data and simulated calculations, the modulation curve for the gamma ray was successfully obtained. A remarkably high polarization sensitivity was achieved, compatible with a reasonable detection efficiency. Based on the obtained results, a possible future gamma-ray polarimetery is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294463PMC
http://dx.doi.org/10.1038/s41598-024-52692-2DOI Listing

Publication Analysis

Top Keywords

cdte compton
8
compton camera
8
gamma-ray polarimeter
8
detection efficiency
8
gamma-ray
5
demonstration nuclear
4
nuclear gamma-ray
4
gamma-ray polarimetry
4
polarimetry based
4
based multi-layer
4

Similar Publications

Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera.

View Article and Find Full Text PDF

Development of a Monte Carlo simulation platform for the systematic evaluation of photon-counting detector-based micro-CT.

Phys Med

October 2024

Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Electronic address:

Purpose: This study aimed to develop a photon-counting detector (PCD) based micro-CT simulation platform for assessing the performance of three different PCD sensor materials: cadmium telluride (CdTe), gallium arsenide (GaAs), and silicon (Si). The evaluation encompasses the components of primary and scatter signals, performance of imaging contrast agents, and detector efficiency.

Methods: Simulations were performed using the Geant4 Monte Carlo toolkit, and a micro-PCD-CT system was meticulously modeled based on realistic geometric parameters.

View Article and Find Full Text PDF

To detect and track structural changes in atomic nuclei, the systematic study of nuclear levels with firm spin-parity assignments is important. While linear polarization measurements have been applied to determine the electromagnetic character of gamma-ray transitions, the applicable range is strongly limited due to the low efficiency of the detection system. The multi-layer Cadmium-Telluride (CdTe) Compton camera can be a state-of-the-art gamma-ray polarimeter for nuclear spectroscopy with the high position sensitivity and the detection efficiency.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a high-dose-intensive radiation therapy that has gained popularity due to advancements in accelerator neutron sources. To determine the dose for BNCT, it is necessary to know the difficult-to-determine boron concentration and neutron fluence. To estimate this dose, we propose a method of measuring the prompt γ-rays (PGs) from the boron neutron capture reaction (BNCR) using a Compton camera.

View Article and Find Full Text PDF

Dual-radionuclide in vivo imaging of micro-metastasis and lymph tract with submillimetre resolution.

Sci Rep

November 2023

Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan.

Multi-radionuclide in vivo imaging with submillimetre resolution can be a potent tool for biomedical research. While high-resolution radionuclide imaging faces challenges in sensitivity, multi-radionuclide imaging encounters difficulty due to radiation contamination, stemming from crosstalk between radionuclides and Compton scattering. Addressing these challenges simultaneously is imperative for multi-radionuclide high-resolution imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!