Background: Hip dysplasia is a condition where the acetabulum is too shallow to support the femoral head and is commonly considered a risk factor for hip osteoarthritis. The objective of this study was to develop a deep learning model to diagnose hip dysplasia from plain radiographs and classify dysplastic hips based on their severity.
Methods: We collected pelvic radiographs of 571 patients from two single-center cohorts and one multicenter cohort. The radiographs were split in half to create hip radiographs (n = 1022). One orthopaedic surgeon and one resident assessed the radiographs for hip dysplasia on either side. We used the center edge (CE) angle as the primary diagnostic criteria. Hips with a CE angle < 20°, 20° to 25°, and > 25° were labeled as dysplastic, borderline, and normal, respectively. The dysplastic hips were also classified with both Crowe and Hartofilakidis classification of dysplasia. The dataset was divided into train, validation, and test subsets using 80:10:10 split-ratio that were used to train two deep learning models to classify images into normal, borderline and (1) Crowe grade 1-4 or (2) Hartofilakidis grade 1-3. A pre-trained on Imagenet VGG16 convolutional neural network (CNN) was utilized by performing layer-wise fine-turning.
Results: Both models struggled with distinguishing between normal and borderline hips. However, achieved high accuracy (Model 1: 92.2% and Model 2: 83.3%) in distinguishing between normal/borderline vs. dysplastic hips. The overall accuracy of Model 1 was 68% and for Model 2 73.5%. Most misclassifications for the Crowe and Hartofilakidis classifications were +/- 1 class from the correct class.
Conclusions: This pilot study shows promising results that a deep learning model distinguish between normal and dysplastic hips with high accuracy. Future research and external validation are warranted regarding the ability of deep learning models to perform complex tasks such as identifying and classifying disorders using plain radiographs.
Level Of Evidence: Diagnostic level IV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854089 | PMC |
http://dx.doi.org/10.1186/s12891-024-07244-0 | DOI Listing |
Clin Oral Implants Res
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran.
Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.
Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.
Adv Sci (Weinh)
January 2025
Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China.
Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Engineering, South China Agricultural University, Guangzhou, China.
Introduction: Accurate detection and recognition of tea bud images can drive advances in intelligent harvesting machinery for tea gardens and technology for tea bud pests and diseases. In order to realize the recognition and grading of tea buds in a complex multi-density tea garden environment.
Methods: This paper proposes an improved YOLOv7 object detection algorithm, called YOLOv7-DWS, which focuses on improving the accuracy of tea recognition.
Front Plant Sci
January 2025
Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Smart farming is a hot research area for experts globally to fulfill the soaring demand for food. Automated approaches, based on convolutional neural networks (CNN), for crop disease identification, weed classification, and monitoring have substantially helped increase crop yields. Plant diseases and pests are posing a significant danger to the health of plants, thus causing a reduction in crop production.
View Article and Find Full Text PDFFront Genet
January 2025
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States.
Recent advancements in deep learning, particularly large language models (LLMs), made a significant impact on how researchers study microbiome and metagenomics data. Microbial protein and genomic sequences, like natural languages, form a , enabling the adoption of LLMs to extract useful insights from complex microbial ecologies. In this paper, we review applications of deep learning and language models in analyzing microbiome and metagenomics data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!