A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning the Potency of Farnesol-Modified Polyethylenimine with Polyanionic Trans-Booster to Enhance DNA Delivery. | LitMetric

AI Article Synopsis

  • Low molecular weight polyethylenimine (PEI) based lipopolymers are being studied as nonviral carriers for gene therapy, showing good DNA binding and cellular uptake.
  • Despite their promising features, the specific polymer developed (PEI1.2k-SA-Far7) struggled to achieve strong transfection in cell cultures on its own.
  • The addition of a commercial additive called Trans-Booster improved the transfection efficiency of the polyplexes, making them as effective as established reagents while maintaining cell compatibility and low toxicity.

Article Abstract

Low molecular weight polyethylenimine (PEI) based lipopolymers become an attractive strategy to construct nonviral therapeutic carriers with promising transfection efficiency and minimal toxicity. Herein, this paper presents the design and synthesis of novel farnesol (Far) conjugated PEI, namely PEI1.2k-SA-Far7. The polymers had quick DNA complexation, effective DNA unpacking (dissociation), and cellular uptake abilities when complexed with plasmid DNA. However, they were unable to provide robust transfection in culture, indicating inability of Far grafting to improve the transfection efficacy significantly. To overcome this limitation, the commercially available polyanionic Trans-Booster additive, which is capable of displaying electrostatic interaction with PEI1.2k-SA-Far7, has been used to enhance the uptake of pDNA polyplexes and transgene expression. pDNA condensation was successfully achieved in the presence of the Trans-Booster with more stable polyplexes, and in vitro transfection efficacy of the polyplexes was improved to be comparable to that obtained with an established reference reagent. The PEI1.2k-SA-Far7/pDNA/Trans-Booster ternary complex exhibited good compatibility with cells and minimal hemolysis activity. This work demonstrates the exemplary potency of using additives in polyplexes and the potential of resultant ternary complexes for effective pDNA delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c00033DOI Listing

Publication Analysis

Top Keywords

polyanionic trans-booster
8
transfection efficacy
8
tuning potency
4
potency farnesol-modified
4
farnesol-modified polyethylenimine
4
polyethylenimine polyanionic
4
trans-booster enhance
4
dna
4
enhance dna
4
dna delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!