A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An approach for state differentiation in nucleic acid circuits: Application to diagnostic DNA computing. | LitMetric

An approach for state differentiation in nucleic acid circuits: Application to diagnostic DNA computing.

Anal Chim Acta

Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, AE, 7500, the Netherlands. Electronic address:

Published: March 2024

AI Article Synopsis

  • This study introduces a new method to differentiate states in nucleic acid circuits, focusing on biologically significant states to simplify the process.
  • The circuit features four DNA logic gates and two modules designed for fetal gender determination and diagnosing X-linked disorders, producing a colorimetric signal in response to specific biomarkers.
  • This innovative approach not only reduces complexity and cost but also enhances the potential for DNA computing and medical diagnostics.

Article Abstract

Background: Differentiating between different states in nucleic acid circuits is crucial for various biological applications. One approach, there is a requirement for complicated sequential summation, which can be excessive for practical purposes. By selectively labeling biologically significant states, this study tackles the issue and presents a more cost-effective and streamlined solution. The challenge is to efficiently distinguish between different states in a nucleic acid circuit.

Results: An innovative method is introduced in this study to distinguish between states in a nucleic acid circuit, emphasizing the biologically relevant ones. The circuit comprises four DNA logic gates and two detection modules, one for determining fetal gender and the other for diagnosing X-linked genetic disorders. The primary module generates a G-quadruplex DNAzyme when activated by specific biomarkers, which leads to a distinct colorimetric signal. The secondary module responds to hemophilia and choroideremia biomarkers, generating one or two DNAzymes. The absence of female fetus indicators results in no DNAzyme or color change. The circuit can differentiate various fetal states by producing one to four active DNAzymes in response to male fetus biomarkers. A single-color solution for state differentiation is provided by this approach, which promises significant advancements in DNA computing and diagnostic applications.

Significance: The innovative approach used in this study to distinguish states in nucleic acid circuits holds great significance. By selectively labeling biologically relevant states, circuit design is simplified and complexity is reduced. This advancement enables cost-effective and efficient diagnostic applications and contributes to DNA computing, providing a valuable solution to a fundamental problem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342266DOI Listing

Publication Analysis

Top Keywords

nucleic acid
20
states nucleic
16
acid circuits
12
dna computing
12
distinguish states
12
state differentiation
8
selectively labeling
8
labeling biologically
8
study distinguish
8
biologically relevant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!