N-Acetylcysteine Alters Disease Progression and Increases Janus Kinase Mutation Frequency in a Mouse Model of Precursor B-Cell Acute Lymphoblastic Leukemia.

J Pharmacol Exp Ther

Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)

Published: March 2024

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19 pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.123.002000DOI Listing

Publication Analysis

Top Keywords

mouse model
16
disease progression
12
b-cell acute
12
acute lymphoblastic
12
lymphoblastic leukemia
12
janus kinase
8
model precursor
8
precursor b-cell
8
associated high
8
high levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!