A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites.

Int J Biol Macromol

School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China. Electronic address:

Published: March 2024

How to effectively improve the poor interfacial adhesion between polylactic acid/poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix and thermoplastic starch (TPS) is still a challenge. Therefore, this work aims to introduce a convenient method to enhance the performance of PLA/PBAT/TPS blend by melt reactive extrusion. Here, using 4,4'-methylene-bis(N,N-diglycidyl-aniline) (MBDG) containing four epoxy groups as a reactive compatibilizer, and respectively using 1-methylimidazole (MI) or triethylenediamine (TD) as a catalyzer, serial PLA/PBAT/TPS ternary bio-composites are successfully prepared via melt reactive extrusion. The results showed that, under the catalysis of organic base, especially MI, the epoxy groups of MBDG can effectively react with hydroxyl and carboxyl groups of PLA/PBAT and hydroxyl groups in TPS to form chain-expanded and cross-linked structures. The tensile strength of the composites is increased by 20.0 % from 21.1 MPa, and the elongation at break is increased by 182.4 % from 17.6 % owing to the chain extension and the forming of cross-linked structures. The molecular weight, thermal stability, crystallinity, and surface hydrophobicity of the materials are gradually improved with the increase of MBDG content. The melt fluidity of the composites is also improved due to the enhancement of compatibility. The obtained PLA/PBAT/TPS materials have the potential to be green plastic products with good properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129998DOI Listing

Publication Analysis

Top Keywords

epoxy groups
12
polylactic acid/polybutylene
8
ternary bio-composites
8
melt reactive
8
reactive extrusion
8
cross-linked structures
8
groups
5
reactive
4
reactive compatibilization
4
compatibilization compound
4

Similar Publications

Conventional PP with a linear chain structure is not suitable for foam processing due to its poor rheological properties. In this study, PP was modified with PE through reactive melt blending of maleic anhydride-grafted PP (MA-PP) with a small amount of PE bearing glycidyl groups on its backbone (G-PE), with the aim of enhancing the melt rheological properties of PP to make it suitable for foam processing. An anhydride-epoxy reaction occurred between MA-PP and G-PE during the melt processing, resulting in the formation of a crosslinked polymer network, which was confirmed by FTIR spectroscopy, a solubility test, and the presence of a rubbery plateau above the melting point.

View Article and Find Full Text PDF

The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials.

View Article and Find Full Text PDF

Scots Pine Bark Extracts as Co-Hardeners of Epoxy Resins.

Molecules

December 2024

Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland.

Extracts from natural waste like bark or leaves are great sources of phytochemicals, which contain functional groups (hydroxyl, carboxylic, vinyl, allyl) attractive in terms of polymer synthesis. In this study, the synthesis of epoxy with an extract of Scots pine bark as a natural co-hardener was evaluated. Ultraviolet-visible (UV-Vis) spectroscopy was used for the identification of phytochemicals with conjugated dienes and quantification of TPC.

View Article and Find Full Text PDF

Diterpenoid alkaloids from the roots of Aconitum bulbilliferum.

Fitoterapia

January 2025

School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Key laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China. Electronic address:

The phytochemistry study of Aconitum bulbilliferum Hand.-Mazz. is firstly reported.

View Article and Find Full Text PDF

Cross-linked polyethylene (XLPE) is applied in most advanced high-voltage direct-current (HVDC) power cable insulations, which are produced via dicumyl peroxide (DCP) technology. The electrical conductivity of insulation material can be increased by cross-linking byproducts from the DCP process. Hence, currently much attention is being paid to a new process to produce cross-linking byproduct-free XLPE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!