Fibrin clot fracture under cyclic fatigue and variable rate loading.

Acta Biomater

Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada. Electronic address:

Published: March 2024

Fibrin clot is a vital class of fibrous materials, governing the mechanical response of blood clots. Fracture behavior of fibrin clots under complex physiological load is relevant for hemostasis and thrombosis. But how they fracture under cyclic and variable rate loading has not been reported. Here we conduct cyclic fatigue and monotonic variable rate loading tests on fibrin clots to characterize their fracture properties in terms of fatigue threshold and rate-dependent fracture toughness. We demonstrate that the fracture behavior of fibrin clots is sensitive to the amplitude of cyclic load and the loading rate. The cyclic fatigue tests show the fatigue threshold of fibrin clots at 1.66 J/m, compared to the overall fracture toughness 15.8 J/m. Furthermore, we rationalize the fatigue threshold using a semi-empirical model parameterized by 3D morphometric quantification to account for the hierarchical molecular structure of fibrin fibers. The variable loading tests reveal rate dependence of the overall fracture toughness of fibrin clots. Our analysis with a viscoelastic fracture model suggests the viscoelastic origin of the rate-dependent fracture toughness. The toughening mechanism of fibrin clots is further compared with biological tissues and hydrogels. This study advances the understanding and modeling of fatigue and fracture of blood clots and would motivate further investigation on the mechanics of fibrous materials. STATEMENT OF SIGNIFICANCE: Fibrin clot is a soft fibrous gel, exhibiting nonlinear mechanical responses under complex physiological loads. It is the main load-bearing constituent of blood clots where red blood cells, platelets and other cells are trapped. How the fibrin clot fractures under complex mechanical loads is critical for hemostasis and thrombosis. We study the fracture behavior of fibrin clots under cyclic fatigue and monotonic variable rate loads. We characterize the fatigue-threshold and viscous energy dissipation of fibrin clots. We compare the toughness enhancement of fibrin clots with hydrogels. The findings offer new insights into the fatigue and fracture of blood clots and fibrous materials, which could improve design guidelines for bioengineered materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.01.046DOI Listing

Publication Analysis

Top Keywords

fibrin clots
36
fibrin clot
16
cyclic fatigue
16
variable rate
16
blood clots
16
fracture toughness
16
fibrin
14
fracture
13
clots
13
rate loading
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!