Transformation and migration of Hg in a polluted alkaline paddy soil during flooding and drainage processes.

Environ Pollut

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Published: March 2024

AI Article Synopsis

  • * High levels of organic- and sulfide-bound mercury indicate low mobility and environmental risk, though changes in soil pH can affect mercury's behavior significantly.
  • * The research shows that while inorganic mercury can convert to methylmercury during flooding, the levels of inorganic mercury in rice are concerning post-harvest, highlighting risks and informing strategies for safer rice production.

Article Abstract

Mercury (Hg) contamination in paddy soils poses a health risk to rice consumers and the environmental behavior of Hg determines its toxicity. Thus, the variations of Hg speciation are worthy of exploring. In this study, microcosm and pot experiments were conducted to elucidate Hg transformation, methylation, bioaccumulation, and risk coupled with biogeochemical cycling of key elements in a Hg-polluted alkaline paddy soil. In microcosm and pot experiments, organic- and sulfide-bound and residual Hg accounted for more than 98% of total Hg, and total contents of dissolved, exchangeable, specifically adsorbed, and fulvic acid-bound Hg were less than 2% of total Hg, indicating a low mobility and environmental risk of Hg. The decrease of pH aroused from Fe(III), SO, and NO reduction promoted Hg mobility, whereas the increase of pH caused by Fe(II), S, and NH oxidation reduced available Hg contents. Moreover, Fe-bearing minerals reduction and organic matter consumption promoted Hg mobility, whereas the produced HgS and Fe(II) oxidation increased Hg stability. During flooding, a fraction of inorganic Hg (IHg) could be transported into methylmercury (MeHg), and during drainage, MeHg would be converted back into IHg. After planting rice in an alkaline paddy soil, available Hg was below 0.3 mg kg. During rice growth, a portion of available Hg transport from paddy soil to rice, promoting Hg accumulation in rice grains. After rice ripening, IHg levels in rice tissues followed the trend: root > leaf > stem > grain, and IHg content in rice grain exceed 0.02 mg kg, but MeHg content in rice grain meets daily intake limit (37.45 μg kg). These results provide a basis for assessing the environmental risks and developing remediation strategies for Hg-contaminated redox-changing paddy fields as well as guaranteeing the safe production of rice grains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123471DOI Listing

Publication Analysis

Top Keywords

paddy soil
16
alkaline paddy
12
rice
10
microcosm pot
8
pot experiments
8
promoted mobility
8
feii oxidation
8
rice grains
8
content rice
8
rice grain
8

Similar Publications

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Metabolomic interpretation of bacterial and fungal contribution to per- and polyfluoroalkyl substances interface migration in waterlogged paddy fields.

Environ Pollut

December 2024

Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release.

View Article and Find Full Text PDF

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

[Characteristics and Comprehensive Quality Assessment of Heavy Metals in Soil-crop System of High Geological Background Area].

Huan Jing Ke Xue

January 2025

Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.

Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!