The transport of floating macroplastics (>2.5 cm) can be impacted by variations in hydrometeorological forcing. Several studies have demonstrated that river discharge, wind, and tides can either accelerate or impede the downstream travel path of plastic. However, there remains a substantial gap in our understanding of the impact of river geomorphological complexity on this process. In this context, the role that river bifurcations play in driving plastic dynamics under different hydrometeorological conditions is largely unexplored. Here, we show that specific plastic item categories react differently to the transport drivers, and bifurcation areas can function both as a retention and release site of plastic litter. We found that hard polyolefin appears to be the most responsive plastic to changes in flow discharge (ρ≈0.40, p≈0.01). Absolute wind velocity magnitude does not correlate to plastic transport. We explored correlations of the various plastic items types with wind vector components in all directions. Multilayer plastics correlated highest to the wind vector component that is most effective in driving plastics from an urban area to the river (ρ≈0.57, p≈0.0001). On a monthly scale, the bifurcation area retained up to 50% of the incoming upstream plastic flux. At other times, an additional 30% was released in the same area. Our results demonstrate how bifurcations distribute different plastic items types downstream under varied hydrometeorological conditions. These yields underscore the importance of assessing floating plastic transport in specific plastic item categories and taking river geomorphological complexity into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.123490 | DOI Listing |
Sci Rep
December 2024
Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy.
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFNat Commun
December 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.
View Article and Find Full Text PDFSci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFSci Rep
December 2024
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!