Size-independent boosting of near-infrared persistent luminescence in nano-phosphors via a magnesium doping strategy.

J Colloid Interface Sci

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: May 2024

Near-infrared (NIR)-emitting persistent luminescence nanoparticles (PLNPs) are ideal optical imaging contrast reagents characterized by autofluorescence-free optical imaging for their frontier applications in long-term bioimaging. Preparation of uniform small-sized PLNPs with excellent luminescence performance is crucial for biomedical applications, but challenging. Here, we report a facile magnesium doping strategy to achieve size-independent boost of NIR persistent luminescence in typical and most concerned ZnGaO:Cr PLNPs. This strategy relies on the doping of Mg ions that with similar size of Zn ions in the host lattice matrix, and concomitant to the electron traps tailoring tuned by varying the feed ratio of Mg. The optimum Mg-doped PLNPs give a long afterglow time (signal-to-noise ratio (SNR) = 31.6 at 30 d) without changing the desirable uniform sub-10 nm size of the original nanocrystals. The appropriate increase of the depth and concentration of electron trap contribute jointly to the enhancement of lifetime (488 % longer, 20.57 s) and afterglow time for 700 nm persistent luminescence. Meanwhile, these PLNPs keep the original excellent rechargeability and promote over 60 times increase of SNR in renewable in vivo imaging. This simple strategy provides a basis for new opportunities to address the critical challenge of effective optical performance boost in small-sized PLNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.008DOI Listing

Publication Analysis

Top Keywords

persistent luminescence
16
magnesium doping
8
doping strategy
8
optical imaging
8
small-sized plnps
8
afterglow time
8
plnps
6
luminescence
5
size-independent boosting
4
boosting near-infrared
4

Similar Publications

In Situ Slow-Release Hydrogen Sulfide Therapeutics for Advanced Disease Treatments.

Small

January 2025

Department of Neurosurgery, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.

Hydrogen sulfide (HS) gas therapygarners significant attention for its potential to improve outcomes in various disease treatments. The quantitative control of HS release is crucial for effective the rapeutic interventions; however, traditional researchon HS therapy frequently utilizes static release models and neglects the dynamic nature of blood flow. In this study, we propose a novel slow-release in-situ HS release model that leverages the dynamic hydrolysis of HS donorswithin the bloodstream.

View Article and Find Full Text PDF

Background: Foodborne pathogenic bacteria lead to a significant increase in illnesses and fatalities annually. In the early stage of a pathogenic bacterial infection, the concentration of bacteria in food is lower than the detection limit of most technology which enhances the difficulty in diagnosis. It is a serious challenge for researchers to develop a rapid, sensitive, accurate, and stable pathogenic bacterial determination method without costly equipment and highly skilled operators.

View Article and Find Full Text PDF

Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging.

Natl Sci Rev

February 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification.

View Article and Find Full Text PDF

Long Persistent Luminescence in Cu-Doped SrGaGeO for Information Storage and Encryption.

Inorg Chem

January 2025

Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Information storage and encryption are the key technologies for modern information transmission. However, most optical information storage technologies based on long persistent luminescent (PersL) only have one fixed response mode, which is easy to imitate, limiting their security in advanced information storage and encryption applications. Besides, the cost of rare earth-doped PersL materials restricts their wide application.

View Article and Find Full Text PDF

Photochromic Sodalites: From Natural Minerals to Advanced Applied Materials.

Acc Chem Res

January 2025

Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.

ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!