Nanoplasmonic Detection of EGFR Mutations Based on Extracellular Vesicle-Derived EGFR-Drug Interaction.

ACS Appl Mater Interfaces

Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Published: February 2024

AI Article Synopsis

  • Analyzing membrane proteins in extracellular vesicles (EVs) is becoming crucial for cancer diagnosis, particularly for identifying mutations in the epidermal growth factor receptor (EGFR) related to non-small cell lung cancer (NSCLC).
  • Traditional methods for protein analysis require large samples and complex procedures, but a new nanoplasmonic detection technique shows promise for detecting EGFR mutations using a model drug, gefitinib.
  • This method leverages surface-enhanced Raman spectroscopy (SERS) to detect higher signals from gefitinib in EVs with EGFR exon 19 deletions in NSCLC patients, suggesting potential for improved liquid biopsy diagnostics.

Article Abstract

Analysis of membrane proteins from extracellular vesicles (EVs) has emerged as an important strategy for molecular cancer diagnosis. The epidermal growth factor receptor (EGFR) is one of the most well-known oncogenic membrane proteins, particularly in non-small cell lung cancer (NSCLC), where targeted therapies using tyrosine kinase inhibitors (TKIs) are often addressed based on EGFR mutation status. Consequently, several studies aimed at analyzing oncogenic membrane proteins have been proposed for cancer diagnosis. However, conventional protein analysis still faces limitations due to the requirement for large sample quantities and extensive post-labeling processes. Here, we develop a nanoplasmonic detection method for EGFR mutations in the diagnosis of NSCLC based on interactions between EGFR loaded in EVs and TKI. Gefitinib is selected as a model TKI due to its strong signals in the surface-enhanced Raman spectroscopy (SERS) and mutation-dependent binding affinity to EGFR. We demonstrate an SERS signal attributed to gefitinib at a higher value in the EGFR exon 19 deletion, both in cells and EVs, compared to wild-type and exon 19 deletion/T790M variants. Furthermore, we observe a significantly higher gefitinib SERS signal in EGFR obtained from exon 19 deletion NSCLC patient plasma-derived EVs compared with those from wild-type and exon 19 deletion/T790M EVs. Since our approach utilizes an analysis of the SERS signal generated by the interaction between oncogenic membrane proteins within EVs and targeted drugs, its diagnostic applicability could potentially extend to other liquid biopsy methods based on EVs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c14907DOI Listing

Publication Analysis

Top Keywords

membrane proteins
16
oncogenic membrane
12
sers signal
12
nanoplasmonic detection
8
egfr
8
egfr mutations
8
cancer diagnosis
8
egfr exon
8
exon deletion
8
evs compared
8

Similar Publications

MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translates into how they function in the epithelial to mesenchymal transition and/or the mesenchymal to epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17).

View Article and Find Full Text PDF

Purpose: The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis.

Methods: C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control.

View Article and Find Full Text PDF

Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on of Tomato.

Phytopathology

January 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.

View Article and Find Full Text PDF

Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.

Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.

View Article and Find Full Text PDF

Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!