Conventional antineoplastic therapies cause severe normal tissue damage and existing cytoprotectants with acute toxicities or potential tumor protection limit their clinical application. We evaluated the selective cytoprotection of 2,2-dimethylthiazolidine hydrochloride in this study, which could protect normal tissue toxicity without interfering antineoplastic therapies. By using diverse cell lines and A549 xenograft model, we discovered a synthetic aminothiol 2,2-dimethylthiazolidine hydrochloride selectively diminished normal cellular ferroptosis via SystemXc-/Glutathione Peroxidase 4 pathway upon antineoplastic therapies without interfering the anticancer efficacy. We revealed the malignant and non-malignant tissues presenting different energy metabolism patterns. And cisplatin induces disparate replicative stress, contributing to the distinguishable cytoprotection of 2,2-dimethylthiazolidine in normal and tumor cells. The compound pre-application could mitigate cisplatin-induced normal cellular mitochondrial oxidative phosphorylation (OXPHOS) dysfunction. Pharmacologic ablation of mitochondria reversed 2,2-dimethylthiazolidine chemoprotection against cisplatin in the normal cell line. Combined, these results provide a potential therapeutic adjuvant to selectively diminish normal tissue damages retaining antineoplastic efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.116227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!