Superhydrophobic surfaces (SHSs) have possibilities for achieving significantly reduced solid-liquid frictional drag in the marine sector due to their excellent water-repelling properties. Although the stability of SHSs plays a key role in drag reduction, little consideration was given to the effect of extreme environments on the ability of SHSs to achieve drag reduction underwater, particularly when subjected to acidic conditions. Here, we propose interconnected microstructures to protect superhydrophobic coatings with the aim of enhancing the stability of SHSs in extreme environments. The stability of armored SHSs (ASHSs) was demonstrated by the contact angle and bounce time of droplets on superhydrophobic surfaces treated by various methods, resulting in an ASHS surface with excellent stability under extreme environmental conditions. Additionally, inspired by microstructures protecting superhydrophobic nanomaterials from frictional wear, the armored superhydrophobic spheres (ASSPs) were designed to explain from theoretical and experimental perspectives why ASSPs can achieve sustainable drag reduction and demonstrate that the ASSPs can achieve drag reduction of over 90.4% at a Reynolds number of 6.25 × 10 by conducting water entry experiments on spheres treated in various solutions. These studies promote a fundamental understanding of what drives the application of SHSs under extreme environmental conditions and provide practical strategies to maximize frictional drag reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c03544 | DOI Listing |
Sports Med Open
January 2025
Mechanical Engineering Department, Texas Tech University, Lubbock, TX, USA.
Background: Drafting for drag reduction is a tactic commonly employed by elite athletes of various sports. The strategy has been adopted by Kenyan runner Eliud Kipchoge on numerous marathon events in the past, including the 2018 and 2022 editions of the Berlin marathon (where Kipchoge set two official world records), as well as in two special attempts to break the 2 h mark for the distance, the Nike Breaking2 (2017) and the INEOS 1:59 Challenge (2019), where Kipchoge used an improved drafting formation to finish in 1:59:40, although that is not recognized as an official record.
Results: In this study, the drag of a realistic model of a male runner is calculated by computational fluid dynamics for a range of velocities.
J Colloid Interface Sci
January 2025
School of Engineering, University of Liverpool, Liverpool, L69 3GH, United Kingdom.
Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.
Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.
Biomimetics (Basel)
January 2025
Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA.
The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie-Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography as model surfaces.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Laboratoire Matière et Systèmes Complexes, CNRS, Université Paris Cité, Paris, France.
Many swimmers, especially small- to medium-sized animals, use intermittent locomotion that differs from continuous swimming of large species. This type of locomotion, called burst and coast, is often associated with an energetic advantage. In this work, we investigate the intermittent locomotion inspired by fish locomotion but applied to a propeller.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!