An imbalance in reactive oxygen species (ROS) levels in tumor cells can result in the accumulation of lipid peroxide (LPO) which can induce ferroptosis. Moreover, elevated ROS levels in tumors present a chance to develop ROS-based cancer therapeutics including photodynamic therapy (PDT) and ferroptosis. However, their anticancer efficacies are compromised by insufficient oxygen levels and inherent cellular ROS regulatory mechanism. Herein, a cell membrane-targeting photosensitizer, TBzT-CNQi, which can generate O, •OH, and O via type I/II process to induce a high level of LPO for potent ferroptosis and photodynamic therapy is developed. The FSP1 inhibitor (iFSP1) is incorporated with TBzT-CNQi to downregulate FSP1 expression, lower the intracellular CoQ10 content, induce a high level of LPO, and activate initial tumor immunogenic ferroptosis. In vitro and in vivo experiments demonstrate that the cell membrane-targeting type I/II PDT combination with FSP1 inhibition can evoke strong ICD and activate the immune response, which subsequently promotes the invasion of CD8+ T cells infiltration, facilitates the dendritic cell maturation, and decreases the tumor infiltration of tumor-associated macrophages. The study indicates that the combination of cell membrane-targeting type I/II PDT and FSP1 inhibition holds promise as a potential strategy for ferroptosis-enhanced photodynamic immunotherapy of hypoxia tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202304436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!