Land use is a stronger determinant of ecological network complexity than the number of trophic levels.

PLoS One

Escuela de Ingeniería en Recursos Renovables, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Chimborazo, Ecuador.

Published: February 2024

Land modification causes biodiversity loss and ecosystem modification. Despite many studies on the impacts of this factor, there is little empirical evidence on how it affects the interaction networks of plants, herbivores and their natural enemies; likewise, there is little evidence on how those networks change due to differences in the complexity of the communities they comprise. We analyzed the effects of land use and number of trophic levels on the interaction networks of exotic legume species and their associated arthropods. We collected seedpods from five exotic legume species (one of them invasive) in four land use types (urbanization, roadside, L. leucocephala plantation, wooded pasture) on Santa Cruz Island in the Galapagos, and obtained all arthropods that emerged from the seeds. Then, we built and analyzed the interaction networks for each land use at two community scales, each with different numbers of trophic levels: (1) three levels: plant-seed beetle-parasitoid (PSP), and (2) more than three levels: plant-seed beetle-parasitoid-predator and other trophic guilds (PSPP). Land use was more relevant than number of trophic levels in the configuration of species interactions. The number of species and interactions was highest on roadsides at PSPP and lowest in plantations at PSP. We found a significant effect of land use on connectance and interaction evenness (IE), and no significant effect of number of trophic levels on connectance, diversity or IE. The simultaneous analysis of land use and number of trophic levels enabled the identification of more complex patterns of community structure. Comparison of the patterns we found among islands and between exotic and native legumes is recommended. Understanding the structure of the communities analyzed here, as well as the relative contribution of their determinants of change, would allow us to develop conservation plans according to the dynamics of these neo-ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857743PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295377PLOS

Publication Analysis

Top Keywords

trophic levels
24
number trophic
20
interaction networks
12
land
8
levels
8
land number
8
exotic legume
8
legume species
8
three levels
8
levels plant-seed
8

Similar Publications

Inter-Island Variability in Trace Elements and Trophic Ecology of Brown Booby (Sula leucogaster) in the South Atlantic.

Environ Pollut

January 2025

Olaf Malm Laboratory of Environmental Studies (LEA-OM), Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro, Brazil; Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of Research (FOCUS), University of Liege, Belgium.

This study investigates essential (Mg, Ca, Fe, Mn, Cu, Zn, Se, Ni) and non-essential (Li, Be, Cr, Rb, Sr, Cs, Cd, Sn, Ba, and Pb) element concentrations and stable isotope (δC, δN, δS) compositions in feathers of Brown Boobies (Sula leucogaster) from three distinct Atlantic islands: the Archipelagos of Saint Peter and Saint Paul (SPSP), Abrolhos, and Cagarras. We aimed to investigate the ecological and environmental factors influencing these seabird populations and assess potential variations in contaminant exposure and dietary habits based on location, sex, and maturity stages. Our finding revealed significant geographical differences in trace element concentrations.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Background: Astrocytes secrete neuromodulators, neurohormones, trophic factors, and synaptogenesis modulators. Trophic factors regulate various cellular processes including synaptic transmission. Astrocytes have critical roles in synaptic development and plasticity.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial reefs (ARs) enhance marine ecosystems and promote sustainable use of marine resources by altering biological communities and fostering species succession.
  • Microbial communities are particularly affected by AR deployment, playing a key role in ecosystem health, stability, and nutrient cycling, while their changes in abundance, diversity, and distribution influence the overall community structure.
  • The article highlights gaps in current research on microbial community risks in AR environments, offering insights into the intricate relationships between microorganisms and larger marine organisms during the development of marine ranches.
View Article and Find Full Text PDF

Biogeochemical patterns in prey species reveal complex mercury exposure pathways from the environment to Aleutian Steller sea lions.

Mar Pollut Bull

December 2024

Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.

Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.

View Article and Find Full Text PDF

Potential feeding sites for seabirds and marine mammals reveal large overlap with offshore wind energy development worldwide.

J Environ Manage

December 2024

Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain.

Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!