The bandgap of most known two-dimensional materials can be tuned by hydrogenation, although certain 2D materials lack a sufficient wide bandgap. Currently, it would be perfect to design non-toxic, low-cost, and high-performance photocatalysts for photocatalytic water splitting via hydrogenation. We systematically examine the impact of hydrogenation on the optical and electronic characteristics of GeC/g-CN vdW heterostructures (vdWHs) with four different stacking patterns using first-principles calculations. The phonon spectra, interlayer distance, binding energies and ab initio molecular dynamics calculations show the kinetic, mechanical, and thermal stability of GeC/g-CN vdWH after hydrogenation at 300, 500 and 800 K and possesses anisotropic Poisson's ratio, Young's and bulk modulus, suggesting that it's a promising candidate for experimental fabrication. According to an investigation of its electronic properties, GeC/g-CN vdWH has a bandgap of 1.28 eV, but hydrogenation dramatically increases it to 2.47 eV. As a result of interface-induced electronic doping, the electronic states in g-CN might be significantly adjusted by coming into contact with hydrogenated GeC sheets. The vdWH exhibits a type-II semiconductor, which can enhance the spatial separation of electron-hole pairs and has a strong red-shift of absorption coefficient than those of the constituent monolayers. The high potential drop caused by the significant valence and conduction band offsets effectively separated the charge carriers. The absorption coefficient of GeCH/g-CN vdWH is highly influenced by a biaxial compressive strain more than the biaxial tensile strain. Our theoretical research implies that the hydrogenated GeCH/g-CN vdWH possesses tunable optical and electronic behaviour for use as a hole-transport material in solar energy harvesting, nanoelectronic and optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300947DOI Listing

Publication Analysis

Top Keywords

electronic states
8
optical electronic
8
gec/g-cn vdwh
8
absorption coefficient
8
gech/g-cn vdwh
8
hydrogenation
6
electronic
5
vdwh
5
interfacial electronic
4
gec/g-cn
4

Similar Publications

CellMsg: graph convolutional networks for ligand-receptor-mediated cell-cell communication analysis.

Brief Bioinform

November 2024

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.

The role of cell-cell communications (CCCs) is increasingly recognized as being important to differentiation, invasion, metastasis, and drug resistance in tumoral tissues. Developing CCC inference methods using traditional experimental methods are time-consuming, labor-intensive, cannot handle large amounts of data. To facilitate inference of CCCs, we proposed a computational framework, called CellMsg, which involves two primary steps: identifying ligand-receptor interactions (LRIs) and measuring the strength of LRIs-mediated CCCs.

View Article and Find Full Text PDF

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.

View Article and Find Full Text PDF

1.5D Chiral Perovskites Mediated by Hydrogen-Bonding Network with Remarkable Spin-Polarized Property.

Angew Chem Int Ed Engl

January 2025

Tianjin University, School of Chemical Engineering and Technology, Yaguan Road #135, Jinnan District, Tianjin 300354, P. R. China, CHINA.

In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.

View Article and Find Full Text PDF

A pyrrole-fused analogue of warped nanographene, designated as deca-nitrogen doped 'WNG' (azaWNG), was synthesized through the annular fusion of decapyrroylcorannulene. The resulting azaWNG exhibited extremely limited solubility in common organic solvents and was characterized solely by mass spectrometry. Theoretical calculations revealed that azaWNG has a sunflower-like molecular structure with electron-deficient corannulene as the core and electron-rich pyrrole as the petals, demonstrating a significantly narrower energy gap compared to all-carbon WNG.

View Article and Find Full Text PDF

Dysfunctional eating attitudes and behaviors among athletes: The role and potential of virtual reality.

Encephale

January 2025

Unité de recherche Loricorps, centre de recherche de l'institut universitaire en santé mentale de Montréal (CR-IUSMM), 7331, rue Hochelaga, QC H1N 3V2 Montréal, Canada; Département des Sciences de l'éducation, université du Québec à Trois-Rivières, 3351, boulevard des Forges, QC G8Z 4M3 Trois-Rivières, Canada. Electronic address:

This brief article discusses the current state of knowledge on the use of virtual reality in assessing and/or treating body image and body image disturbances among athletes with dysfunctional eating attitudes and behaviors ( i.e., eating disorders and disordered eating).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!