A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing the ecological network of resource-based cities to enhance the resilience of regional ecological networks. | LitMetric

Optimizing the ecological network of resource-based cities to enhance the resilience of regional ecological networks.

Environ Sci Pollut Res Int

Key Laboratory of Mine Environmental Monitoring and Improving Around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang, 330013, China.

Published: March 2024

Mineral extraction in resource-based cities has caused serious damage to the original ecology, resulting in poor regional vegetation growth, reduced carbon sequestration capacity, and reduced ecosystem resilience. Especially in resource-based cities with fragile ecology, the overall anti-interference ability of the environment is relatively worse. Seeking ecological network optimization solutions that can improve vegetation growth conditions on a large scale is an effective way to enhance the resilience of regional ecosystems. This paper introduces carbon sequestration indicators and designs a differential ecological networks (ENs) optimization model (FTCC model) to achieve the goal of improving ecosystem resilience. The model identifies the patches that need to be optimized and their optimization directions based on the differences in ecological function-topology-connectivity-carbon sequestration of the patches. Finally, the resilience of the ecological network before and after optimization was compared, proving that the model is effective. The results show that the sources in the Yulin ENs form three main clusters, with connectivity between clusters relying on only a few patches. The patches in the northeastern and southwest clusters are large but their ecological functions need to be improved. After optimization, 16 new stepping stones were added, 38 new corridors were added, and the ecological function of 39 patches was enhanced. The optimized ecological network resilience was improved in terms of structure, function, and carbon sinks, and carbon sinks increased by 6364.5 tons. This study provides a reference for measures to optimize landscape space and manage ecosystem resilience enhancement in resource-based cities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32271-8DOI Listing

Publication Analysis

Top Keywords

ecological network
16
resource-based cities
16
ecosystem resilience
12
enhance resilience
8
resilience regional
8
ecological
8
ecological networks
8
vegetation growth
8
carbon sequestration
8
network optimization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!