A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry method for determination of phytohormones in the medicinal plant saffron.

Anal Methods

TCM Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou Hospital, Zhejiang University, Huzhou, China.

Published: February 2024

AI Article Synopsis

  • Saffron is a valuable Chinese herb with significant medicinal uses, and maximizing flower production is crucial for increasing its yield.
  • Plant hormones play a vital role in saffron growth and development, influencing flower initiation and response to environmental stresses, but extracting accurate hormone levels is challenging due to high starch content in saffron corms.
  • A new pre-treatment method along with an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed to effectively quantify key hormones (ABA and IAA) in saffron, demonstrating high sensitivity and reliability while also adhering to eco-friendly practices.

Article Abstract

Saffron ( L.) is a valuable Chinese herb with high medicinal value. Saffron pistils are used as medicine, so increasing the number of flowers can increase the yield. Plant hormones have essential roles in the growth and development of saffron, as well as the response to biotic and abiotic stresses (especially in floral initiation), which may directly affect the number of flowers. Quantitative analysis of plant hormones provides a basis for more efficient research on their synthesis, transportation, metabolism, and action. However, starch (which interferes with extraction) is present in high levels, and hormone levels are extremely low, in saffron corms, thereby hampering accurate determination of plant-hormone levels in saffron. Herein, we screened an efficient and convenient pre-treatment method for plant materials containing abundant amounts of starch. Also, we proposed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of abscisic acid (ABA) and auxin (IAA). Then, the method was applied for the detection of hormone-content differences between flowering and non-flowering top buds, as well as between lateral and top buds. Our method showed high sensitivity, reproducibility, and reliability. Specifically, good linearity in the range 2-100 ng ml was achieved in the determination of ABA and IAA, and the correlation coefficient () was >0.9982. The relative standard deviation was 2.956-14.51% (intraday) and 9.57-18.99% (interday), and the recovery range was 89.04-101.1% ( = 9). The matrix effect was 80.38-90.50% ( = 3). The method was thoroughly assessed employing various "green" chemistry evaluation tools: Blue Applicability Grade Index (BAGI), Complementary Green Analytical Procedure Index (Complex GAPI) and Red Green Blue 12 Algorithm (RGB12). These tools revealed the good greenness, analytical performance, applicability, and overall sustainability alignment of our method. Quantitative results showed that, compared with saffron with a flowering phenotype cultivated at 25 °C, the contents of IAA and ABA in the terminal buds of saffron cultivated at 16 °C decreased significantly. When cultivated at 25 °C, the IAA and ABA contents in the terminal buds of saffron were 1.54- and 4.84-times higher than those in the lateral buds, respectively. A simple, rapid, and accurate UPLC-MS/MS method was established to determine IAA and ABA contents. Using this method, a connection between the contents of IAA and ABA and the flowering phenotype was observed in the quantification results. Our data lay a foundation for studying the flowering mechanism of saffron.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay00067fDOI Listing

Publication Analysis

Top Keywords

iaa aba
16
cultivated °c
12
saffron
10
method
9
ultra-performance liquid
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
number flowers
8
plant hormones
8

Similar Publications

The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO.

View Article and Find Full Text PDF

Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.

View Article and Find Full Text PDF

Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.

View Article and Find Full Text PDF

Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the (Gibberellic Acid-Stimulated Arabidopsis) gene family, and are involved in the response to biotic and abiotic stress.

View Article and Find Full Text PDF

Brassinosteroid Enhances Cucumber Stress Tolerance to NaHCO by Modulating Nitrogen Metabolism, Ionic Balance and Phytohormonal Response.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Under NaHCO stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na accumulation in cucumber plants, thereby decreasing the Na/K, Na/Mg, and Na/Ca ratios. This mitigation was accompanied by elevated concentrations of K, Ca, and Mg, as well as enhanced expression of the and genes. In addition, the activities of plasma membrane H-ATPase, vesicular membrane H-ATPase, and vesicular membrane H-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!