The Catalytic Role of Superparamagnetic Iron Oxide Nanoparticles as a Support Material for TiO and ZnO on Chlorpyrifos Photodegradation in an Aqueous Solution.

Nanomaterials (Basel)

Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile.

Published: February 2024

Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO, ZnO nanoparticles, and nanocomposites of TiO and ZnO supported on SPIONs (SPION@SiO@TiO and SPION@SiO@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation. The effects of the initial pH, catalyst type, and dose were evaluated. The nanocomposites of SPION@SiO@TiO and SPION@SiO@ZnO showed higher CP photodegradation levels than free nanoparticles, reaching 95.6% and 82.3%, respectively, at pH 7. The findings indicate that iron oxide, as a support material for TiO and ZnO, extended absorption edges and delayed the electron-hole recombination of the nanocomposites, improving their photocatalytic efficiency. At the same time, these nanocomposites, especially SPION@SiO@TiO, showed efficient degradation of 3,5,6-trichloropyridinol (TCP), one of the final metabolites of CP. The stability and reuse of this nanocomposite were also evaluated, with 74.6% efficiency found after six cycles. Therefore, this nanomaterial represents an eco-friendly, reusable, and effective alternative for the degradation of chlorpyrifos in wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856829PMC
http://dx.doi.org/10.3390/nano14030299DOI Listing

Publication Analysis

Top Keywords

tio zno
16
iron oxide
8
support material
8
material tio
8
spion@sio@tio spion@sio@zno
8
nanocomposites spion@sio@tio
8
nanocomposites
5
catalytic role
4
role superparamagnetic
4
superparamagnetic iron
4

Similar Publications

(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Photocatalytic Degradation of Lincosamides in the Presence of Commercial Pigments: Kinetics, Intermediates, and Predicted Ecotoxicity.

Int J Mol Sci

December 2024

Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.

Lincomycin belongs to the antibiotics commonly used in veterinary medicine. Its residues are easily spread in the environment because of its physicochemical properties, including resistance to biodegradation and good solubility in water. One of the effective methods for the removal of lincomycin from wastewater is the photocatalytic process, but it is not widely used due to the price of photocatalysts.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

Currently, there is great demand for flexible three-dimensional (3D) printable thermoplastic polyurethane (TPU) wires with excellent ultraviolet (UV) resistance, which have broad application prospects in wearable products. In this study, UV-resistant TPU composites were obtained using a blending modification method. The relationship between the optimized parameters of fused deposition modeling 3D printing and mechanical properties of the TPU composite is discussed using an orthogonal test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!