Electrohydrodynamic (EHD) jet printing of solvent-based inks or melts allows for the producing of polymeric fiber-based two- and three-dimensional structures with sub-micrometer features, with or without conductive nanoparticles or functional materials. While solvent-based inks possess great material versatility, the stability of the EHD jetting process using such inks remains a major challenge that must be overcome before this technology can be deployed beyond research laboratories. Herein, we study the parameters that affect the stability of the EHD jet printing of polyethylene oxide (PEO) patterns using solvent-based inks. To gain insights into the evolution of the printing process, we simultaneously monitor the drop size, the jet ejection point, and the jet speed, determined by superimposing a periodic electrostatic deflection. We observe printing instabilities to be associated with changes in drop size and composition and in the jet's ejection point and speed, which are related to the evaporation of the solvent and the resulting drying of the drop surface. Thus, stabilizing the printing process and, particularly, the drop size and its surface composition require minimizing or controlling the solvent evaporation rate from the drop surface by using appropriate solvents and by controlling the printing ambient. For stable printing and improved jet stability, it is essential to use polymers with a high molecular weight and select solvents that slow down the surface drying of the droplets. Additionally, adjusting the needle voltages is crucial to prevent instabilities in the jet ejection mode. Although this study primarily utilized PEO, the general trends observed are applicable to other polymers that exhibit similar interactions between solvent and polymer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856662 | PMC |
http://dx.doi.org/10.3390/nano14030273 | DOI Listing |
Adv Mater
December 2024
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
December 2024
Technology Center, China Tobacco Hunan Industrial Co. Ltd., Changsha, People's Republic of China.
Luminescence
June 2024
Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt.
Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest.
View Article and Find Full Text PDFInt J Pharm X
June 2024
Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany.
The field of pharmaceutical 3D printing is growing over the past year, with Spitam® as the first 3D printed dosage form on the market. Showing the suitability of a binder jetting process for dosage forms. Although the development of inks for pharmaceutical field is more trail and error based, focusing on the -number as key parameter to judge the printability of an ink.
View Article and Find Full Text PDFJ Hazard Mater
July 2024
Circular Plastics, Department of Circular Chemical Engineering (CCE), Faculty of Science and Engineering, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands.
Low-density polyethylene (LDPE), extensively employed in flexible plastic packaging, often undergoes printing with inks. However, during the mechanical recycling of post-consumer waste, these inks act as contaminants, subsequently compromising the quality and usability of recycled material. To understand better exactly which ink components cause which effects, this study comprehensively assesses the thermal behavior of three organic pigments and two commonly utilised binders, correlated with the impact on the mechanical recycling of LDPE-based flexible plastic packaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!