Purpose Of Review: The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA).
Recent Findings: ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO.
Summary: Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MED.0000000000000857 | DOI Listing |
Atherosclerosis
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, M0682, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA. Electronic address:
Familial chylomicronemia syndrome (FCS) is a rare, recessive monogenic disorder characterized by severely elevated plasma triglyceride (TG) levels due to absent or markedly impaired lipoprotein lipase activity, leading to a greatly increased risk of acute pancreatitis. Naturally occurring very low levels of apoC-III are associated with low TG levels; thus, apoC-III is a target for TG lowering, and therapies have been developed to reduce apoC-III. Strategies to inhibit hepatic apoC-III synthesis include antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs).
View Article and Find Full Text PDFSci Rep
March 2025
Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China.
Traumatic brain injury (TBI) is more common than ever and is becoming a global public health issue. A variety of secondary brain injuries occur after TBI, including ferroptosis characterized by iron-dependent lipid peroxidation. Gallic acid is a kind of traditional Chinese medicine, which has many biological effects such as anti-inflammatory and antioxidant.
View Article and Find Full Text PDFMayo Clin Proc
March 2025
Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China. Electronic address:
Objective: To investigate the causal relationship between various lipid-modifying drugs and new-onset diabetes, as well as the mediators contributing to this relationship.
Methods: Mediation Mendelian randomization was performed to investigate the causal effect of lipid-modifying drug targets on type 2 diabetes (T2D) outcomes and the proportion of this association that is mediated through ectopic fat accumulation traits. Specific sets of variants in or near genes that encode 11 lipid-modifying drug targets (LDLR, HMGCR, NPC1L1, PCSK9, APOB, ABCG5/ABCG8, LPL, PPARA, ANGPTL3, APOC3, and CETP; for expansion of gene symbols, use search tool at www.
Mol Diagn Ther
January 2025
Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON, N6A 5B7, Canada.
Clinical endpoints caused by hyperlipoproteinemia include atherosclerotic cardiovascular disease and acute pancreatitis. Emerging lipid-lowering therapies targeting proprotein convertase subtilisin/kexin 9 (PCSK9), lipoprotein(a), apolipoprotein C-III, and angiopoietin-like protein 3 represent promising advances in the management of patients with hyperlipoproteinemia. These therapies offer novel approaches for lowering pathogenic lipid and lipoprotein species, particularly in patients with serious perturbations who are not adequately controlled with conventional treatments or who are unable to tolerate them.
View Article and Find Full Text PDFN Engl J Med
January 2025
From the Cardiovascular Division, Department of Medicine, and the Department of Genetics, Washington University School of Medicine, St. Louis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!