Structure and ligand binding in the putative anti-microbial peptide transporter protein, YejA.

Microbiology (Reading)

York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK.

Published: February 2024

YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924461PMC
http://dx.doi.org/10.1099/mic.0.001430DOI Listing

Publication Analysis

Top Keywords

yeja
8
protein yeja
8
proteins structure
8
thermal shift
8
shift assays
8
protein
6
peptides
6
structure
5
binding
5
structure ligand
4

Similar Publications

Infections caused by gram-negative pathogens continue to be a major risk to human health because of the innate antibiotic resistance endowed by their unique cell membrane architecture. Nature has developed an elegant solution to target gram-negative strains, namely by conjugating toxic antibiotic warheads to a suitable carrier to facilitate the active import of the drug to a specific target organism. Microcin C7 (McC) is a Trojan horse peptide-conjugated antibiotic that specifically targets enterobacteria by exploiting active import through oligopeptide transport systems.

View Article and Find Full Text PDF

Structure and ligand binding in the putative anti-microbial peptide transporter protein, YejA.

Microbiology (Reading)

February 2024

York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK.

YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry.

View Article and Find Full Text PDF

The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence.

Microbiology (Reading)

February 2008

Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.

Pathogenic micro-organisms have evolved many strategies to counteract the antimicrobial peptides (AMPs) that they encounter upon entry into host systems. These strategies play vital roles in the virulence of pathogenic micro-organisms. The Salmonella enterica serovar Typhimurium genome has a gene cluster consisting of yejA, yejB, yejE and yejF genes, which encode a putative ATP-binding cassette (ABC) transporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!