<b>Background and Objective:</b> An increase in the consumption of robusta coffee resulted in an increase in waste from coffee, one of the coffee wastes, namely coffee bean skins or cascara. Robusta coffee cascara contains 1-1.3 g of caffeine which causes side effects, such as insomnia and seizures etc. So this research aims to reduce the caffeine content in cascara by using <i>Bacillus subtilis</i>. Using optimum conditions and capabilities. <b>Materials and Methods:</b> The experiment was conducted from May to August, 2022 in the Pharmacy Laboratory, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Indonesia. Before optimizing, cascara was extracted using the ultrasonic assisted extraction (UAE) method, validated by the High-Performance Liquid Chromatography (HPLC) method to determine caffeine content and a paired sample t-test was performed using Statistical Package for the Social Sciences (SPSS). <b>Results:</b> It showed that in validating the HPLC method, the wavelength of caffeine in cascara was 272 nm. The mobile phase was a mixture of methanol-water (adjust orthophosphate). The pH (2.4) (45:55), obtained the optimum decaffeination conditions at the concentration of bacteria <i>Bacillus subtilis</i> 6% and a long incubation time of 24 hrs resulted in a decrease in caffeine content of 51.3843±0.2503%. <b>Conclusion:</b> The results of the paired sample t-test indicate that the concentration of bacteria <i>Bacillus subtilis</i> and incubation time significantly influence caffeine levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3923/pjbs.2023.600.606 | DOI Listing |
Sci Rep
January 2025
Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland.
The main aim of this work was to study the chemical composition of eighteen ground coffees from different countries and continents with regard to the content of hazardous substances as radioactive elements (K, Ra, Ra, U, U and Cs), metals, including heavy metals, aluminum and some microelements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as well as substances that have a positive effect on human health and well-being (polyphenols, proteins, fats and caffeine). The tests were carried out before and after the brewing process using the following techniques: gamma and beta spectrometry, a microwave-induced plasma optical emission spectrometer (MIP-OES), gravimetric method, UV-Vis spectrophotometry as well as thin-layer chromatography. The leaching percentage of certain elements/compounds in coffee infusions was also measured.
View Article and Find Full Text PDFJ Oral Sci
December 2024
Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University.
Purpose: Coffee consumption is a well-known contributor to tooth discoloration, and the extent of staining is influenced by the chemical composition of the coffee. This study investigated the associations of coffee roasting level, chlorogenic acid (CGA) content, absorbance level, and their combined effects with tooth discoloration.
Methods: Bovine tooth enamel specimens were immersed in light, medium, and dark roasts of four coffee types (two Arabica and two Robusta coffees) for 72 h.
PLoS Biol
December 2024
Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom.
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential.
View Article and Find Full Text PDFSci Rep
November 2024
Federal Institute of Education, Science and Technology of Espírito Santo, Venda Nova do Imigrante, Vitória, Espírito Santo, Brazil.
Nutr Res Rev
November 2024
Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
Coffee is one of the most known and consumed beverages worldwide. Only three species are used in commercial coffee production, that is, L. (Arabica coffee), Pierre ex A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!