A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An artificial intelligence-driven predictive model for pediatric allogeneic hematopoietic stem cell transplantation using clinical variables. | LitMetric

Background: Hematopoietic stem cell transplantation (HSCT) is a procedure with high morbidity and mortality. Identifying patients for maximum benefit and risk assessment is crucial in the decision-making process. This has led to the development of predictive risk models for HSCT in adults, which have limitations when applied to pediatric population. Our goal was to develop an automatic learning algorithm to predict survival in children with malignant disorders undergoing HSCT.

Methods: We studied allogenic HSCTs performed on children with malignant disorders at a third-level hospital between 1991 and 2021. Survival was analyzed using the Kaplan-Meier method, log-rank test for the univariate analysis, and Cox regression for the multivariate analysis. A prognostic index was constructed based on these findings. Lastly, we constructed a predictive model using a random forest algorithm to forecast 1-year survival after HSCT.

Results: We analyzed 229 HSCTs in 201 patients with a median follow-up of 1.64 years. Variables that impacted on the multivariate analysis were older age (hazard ratio [HR] 1.40, 95% confidence interval [CI] 1.12-1.76, p = .003), oldest period of HSCT (HR 0.46, 95% CI 0.29-0.73, p < .001), and mismatched donor (HR 2.65, 95% CI 1.51-4.65, p = .001). Our prognostic index was associated with 3-year overall survival (OS; p < .001). A random forest was developed using as variables: diagnosis, age, year of HSCT, time from diagnosis to HSCT, disease stage, donor type, and conditioning. This achieved 72% accuracy in predicting 1-year OS.

Conclusions: Our index and random forest was effective in predicting 1-year survival. However, further validation in diverse populations is necessary to establish their generalizability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejh.14184DOI Listing

Publication Analysis

Top Keywords

predictive model
8
hematopoietic stem
8
stem cell
8
cell transplantation
8
children malignant
8
malignant disorders
8
multivariate analysis
8
artificial intelligence-driven
4
intelligence-driven predictive
4
model pediatric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!