Thin films of cadmium telluride (CdTe) have attained the attention of researchers due to the potential application in solar cells. However, cost-effective fabrication of solar cells based on thin films along with remarkable efficiency and control over optical properties is still a challenging task. This study presents an analysis of the structural, optical and electrical properties of undoped and Cu-doped CdTe thin films fabricated on ITO coated glass substrates using an electrodeposition process with a focus on practical applications. Electrolytes of cadmium (Cd), tellurium (Te) and copper (Cu) are prepared with a low molarity of 0.1 M. Thin films are deposited by keeping current density in the range of 0.12-0.3 mA/cm. Copper doping is varied (2-10 wt%) for the optimized sample. X-ray diffraction crystallography indicates that both undoped CdTe and Cu-doped CdTe films crystallize into a dominant hexagonal lattice. Direct energy band gap is observed for both undoped and doped conditions. The study revealed a drop in the optical band gap energy to ∼1.46 eV with the increase in doping (Cu) concentration from 2 to 10 wt%. Increase in mobility and conductivity is observed with the increase in current density of the deposited undoped CdTe thin films. Whereas, Cu doping of 6 wt% produced thin films with acceptable mobility and conductivity for the doped samples. Furthermore, photoluminescence (PL) spectroscopy unveiled a multitude of emission peaks encompassing the visible spectrum, arising from the combination of electrons and holes through both direct and indirect recombination processes. Findings of this study suggest that chemically produced CdTe thin films would be suitable for use as low-cost applications pertaining to solar cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850418PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e24492DOI Listing

Publication Analysis

Top Keywords

thin films
32
cdte thin
16
solar cells
16
films
9
thin
8
cu-doped cdte
8
current density
8
undoped cdte
8
band gap
8
mobility conductivity
8

Similar Publications

The development of chiral organic materials with strong non-reciprocal chiroptical features may have major implications for cutting-edge technological applications. In this work, a new synthesized chiral 1,4-diketo-3,6-dithienylpyrrolo[3,4-]pyrrole dye, bearing two ()-3,7-dimethyl-1-octyl alkyl chains on the lactam moieties and functionalized with two lateral 9-anthracenyl π-conjugated units, exhibited strong non-reciprocal chiroptical properties in thin films, with some important differences between samples prepared by drop casting and spin coating. A detailed study was performed to unravel the intimate structure-property relationship, involving computational analysis, different microscopy techniques and synchrotron radiation Mueller matrix polarimetry imaging (SR-MMP) investigation.

View Article and Find Full Text PDF

: active learning in neutron reflectometry for fast data acquisition.

J Appl Crystallogr

January 2024

NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far.

View Article and Find Full Text PDF

Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.

View Article and Find Full Text PDF

Zinc nitride (ZnN) comprises earth-abundant elements, possesses a small direct bandgap, and is characterized by high electron mobility. While these characteristics make the material a promising compound semiconductor for various optoelectronic applications, including photovoltaics and thin-film transistors, it commonly exhibits unintentional degenerate n-type conductivity. This degenerate character has significantly impeded the development of ZnN for technological applications and is commonly assumed to arise from incorporation of oxygen impurities.

View Article and Find Full Text PDF

Dual-Induced Directed Deposition Mechanism Based on Anionic Surfactants Enables Long Cycle Aqueous Zinc Ion Batteries.

Small Methods

January 2025

School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China.

Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!