Resistant crop cultivars can recruit beneficial rhizobacteria to resist disease. However, whether this recruitment is regulated by quantitative trait loci (QTL) is unclear. The role of QTL in recruiting specific bacteria against bacterial wilt (BW) is an important question of practical significance to disease management. Here, to identify QTL controlling BW resistance, Super-BSA was performed in F plants derived from resistant eggplant cultivar R06112 × susceptible cultivar S55193. The QTL was narrowed down through BCF-BCF individuals by wilting symptoms and KASP markers. Rhizosphere bacterial composition of R06112, S55193, and resistant individuals EB158 (with the QTL) and susceptible individuals EB327 (without QTL) from BCF generation were assessed by Illumina sequencing-based analysis, and the activation of plant immunity by the bacterial isolates was analyzed. Evidence showed that BW-resistant is controlled by one QTL located at the 270 kb region on chromosome 10, namely , and as candidate genes confirmed by RNA-Seq. has a significant effect on rhizobacteria composition and significantly recruits . pp. A SynCom of three isolated . pp trains significantly reduced the disease incidence, changed activities of CAT, PPO, and PAL and concentration of NO, HO, and O, activated SA and JA signaling-dependent ISR, and displayed immune activation against in eggplant. Our findings demonstrate for the first time that the QTL can recruit beneficial rhizobacteria, which jointly promote the suppression of BW. This method charts a path to develop the QTL in resistant cultivar-driven probiotics to ameliorate plant diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852381 | PMC |
http://dx.doi.org/10.1093/hr/uhad272 | DOI Listing |
Front Plant Sci
December 2024
Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.
Rice ( L.) is a staple food for more than half of the world's population, but its yields are increasingly threatened by environmental problems, including soil compaction. This problem limits root growth which limits water and nutrient foraging capacity thus reduces productivity due to, restricted diffusion of ethylene, a key plant hormone playing an important role in exacerbating these effects.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Science (NIAB-C, PIEAS), Faisalabad, Pakistan.
Accessing the underlying genetics of complex traits, especially in small grain pulses is an important breeding objective for crop improvement. Genome-wide association studies (GWAS) analyze thousands of genetic variants across several genomes to identify links with specific traits. This approach has discovered many strong associations between genes and traits, and the number of associated variants is expected to continue to increase as GWAS sample sizes increase.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an "Orphan Legume", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years.
View Article and Find Full Text PDFBiol Direct
December 2024
Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging.
Methods: We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML).
Sci Rep
December 2024
Hy-Line International, 2583 240th St, PO Box 310, Dallas Center, 50063, IA, USA.
Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F population, and by selective DNA pooling (SDP) of 8 elite egg production lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!